-
Notifications
You must be signed in to change notification settings - Fork 2.7k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Use a new low-memory approach for tf dataset index shuffling #5863
Conversation
The docs for this PR live here. All of your documentation changes will be reflected on that endpoint. |
Show benchmarksPyArrow==8.0.0 Show updated benchmarks!Benchmark: benchmark_array_xd.json
Benchmark: benchmark_getitem_100B.json
Benchmark: benchmark_indices_mapping.json
Benchmark: benchmark_iterating.json
Benchmark: benchmark_map_filter.json
Show updated benchmarks!Benchmark: benchmark_array_xd.json
Benchmark: benchmark_getitem_100B.json
Benchmark: benchmark_indices_mapping.json
Benchmark: benchmark_iterating.json
Benchmark: benchmark_map_filter.json
|
Show benchmarksPyArrow==8.0.0 Show updated benchmarks!Benchmark: benchmark_array_xd.json
Benchmark: benchmark_getitem_100B.json
Benchmark: benchmark_indices_mapping.json
Benchmark: benchmark_iterating.json
Benchmark: benchmark_map_filter.json
Show updated benchmarks!Benchmark: benchmark_array_xd.json
Benchmark: benchmark_getitem_100B.json
Benchmark: benchmark_indices_mapping.json
Benchmark: benchmark_iterating.json
Benchmark: benchmark_map_filter.json
|
Show benchmarksPyArrow==8.0.0 Show updated benchmarks!Benchmark: benchmark_array_xd.json
Benchmark: benchmark_getitem_100B.json
Benchmark: benchmark_indices_mapping.json
Benchmark: benchmark_iterating.json
Benchmark: benchmark_map_filter.json
Show updated benchmarks!Benchmark: benchmark_array_xd.json
Benchmark: benchmark_getitem_100B.json
Benchmark: benchmark_indices_mapping.json
Benchmark: benchmark_iterating.json
Benchmark: benchmark_map_filter.json
|
The approach we take here is to no longer materialize the entire index array or shuffle buffer. Instead, we do the following:
Using this approach gives us a complete iteration over the dataset that does not skip any samples, compiles in TF and also never materializes the complete index array, which should avoid the memory usage issues. I'm testing that now! |
Show benchmarksPyArrow==8.0.0 Show updated benchmarks!Benchmark: benchmark_array_xd.json
Benchmark: benchmark_getitem_100B.json
Benchmark: benchmark_indices_mapping.json
Benchmark: benchmark_iterating.json
Benchmark: benchmark_map_filter.json
Show updated benchmarks!Benchmark: benchmark_array_xd.json
Benchmark: benchmark_getitem_100B.json
Benchmark: benchmark_indices_mapping.json
Benchmark: benchmark_iterating.json
Benchmark: benchmark_map_filter.json
|
Show benchmarksPyArrow==8.0.0 Show updated benchmarks!Benchmark: benchmark_array_xd.json
Benchmark: benchmark_getitem_100B.json
Benchmark: benchmark_indices_mapping.json
Benchmark: benchmark_iterating.json
Benchmark: benchmark_map_filter.json
Show updated benchmarks!Benchmark: benchmark_array_xd.json
Benchmark: benchmark_getitem_100B.json
Benchmark: benchmark_indices_mapping.json
Benchmark: benchmark_iterating.json
Benchmark: benchmark_map_filter.json
|
Looks good in testing - this should be ready for review! cc @lhoestq @massquantity |
Looks good to me, though i doubt that very few people will upgrade to TF >= 2.9 unless their memory is full:) |
Is it more efficient than using numpy to shuffle as in multiprocessing ? Why not use the same strategy ? |
Good question, honestly! The NumPy strategy works fine, but requires us to handle multiple processes instead of doing everything in In the longer term, I'm hoping that |
And @massquantity TF 2.13 is going to release in a couple of days, so I hope most users are at least on TF 2.9 by now! |
Unless there is a big gap in performance I think code simplicity would be appreciated ^^ |
Show benchmarksPyArrow==8.0.0 Show updated benchmarks!Benchmark: benchmark_array_xd.json
Benchmark: benchmark_getitem_100B.json
Benchmark: benchmark_indices_mapping.json
Benchmark: benchmark_iterating.json
Benchmark: benchmark_map_filter.json
Show updated benchmarks!Benchmark: benchmark_array_xd.json
Benchmark: benchmark_getitem_100B.json
Benchmark: benchmark_indices_mapping.json
Benchmark: benchmark_iterating.json
Benchmark: benchmark_map_filter.json
|
Hi @lhoestq, I tried moving everything to the NumPy path but ran into issues - the For now, how do you feel about reverting and using my original solution, which has fallbacks for all versions of Python and TensorFlow? Once our minimum versions pass Python 3.8 or TF 2.9 we can remove the older code paths. |
Gentle ping on this question @lhoestq! |
Ah yes indeed. Feel free to revert and add comments to explain why you needed to have a different approach for single process |
Show benchmarksPyArrow==8.0.0 Show updated benchmarks!Benchmark: benchmark_array_xd.json
Benchmark: benchmark_getitem_100B.json
Benchmark: benchmark_indices_mapping.json
Benchmark: benchmark_iterating.json
Benchmark: benchmark_map_filter.json
Show updated benchmarks!Benchmark: benchmark_array_xd.json
Benchmark: benchmark_getitem_100B.json
Benchmark: benchmark_indices_mapping.json
Benchmark: benchmark_iterating.json
Benchmark: benchmark_map_filter.json
|
This is probably ready, but likely conflicts with #5883. I'll wait for that PR to be merged and then rebase and merge this one. |
Show benchmarksPyArrow==8.0.0 Show updated benchmarks!Benchmark: benchmark_array_xd.json
Benchmark: benchmark_getitem_100B.json
Benchmark: benchmark_indices_mapping.json
Benchmark: benchmark_iterating.json
Benchmark: benchmark_map_filter.json
Show updated benchmarks!Benchmark: benchmark_array_xd.json
Benchmark: benchmark_getitem_100B.json
Benchmark: benchmark_indices_mapping.json
Benchmark: benchmark_iterating.json
Benchmark: benchmark_map_filter.json
|
Show benchmarksPyArrow==8.0.0 Show updated benchmarks!Benchmark: benchmark_array_xd.json
Benchmark: benchmark_getitem_100B.json
Benchmark: benchmark_indices_mapping.json
Benchmark: benchmark_iterating.json
Benchmark: benchmark_map_filter.json
Show updated benchmarks!Benchmark: benchmark_array_xd.json
Benchmark: benchmark_getitem_100B.json
Benchmark: benchmark_indices_mapping.json
Benchmark: benchmark_iterating.json
Benchmark: benchmark_map_filter.json
|
824f96c
to
b899ea4
Compare
Show benchmarksPyArrow==8.0.0 Show updated benchmarks!Benchmark: benchmark_array_xd.json
Benchmark: benchmark_getitem_100B.json
Benchmark: benchmark_indices_mapping.json
Benchmark: benchmark_iterating.json
Benchmark: benchmark_map_filter.json
Show updated benchmarks!Benchmark: benchmark_array_xd.json
Benchmark: benchmark_getitem_100B.json
Benchmark: benchmark_indices_mapping.json
Benchmark: benchmark_iterating.json
Benchmark: benchmark_map_filter.json
|
…ng approach" This reverts commit 95c177e.
dataset.shuffle(dataset.cardinality()), so use that instead of dataset.shuffle(len(dataset))
b899ea4
to
81761db
Compare
Show benchmarksPyArrow==8.0.0 Show updated benchmarks!Benchmark: benchmark_array_xd.json
Benchmark: benchmark_getitem_100B.json
Benchmark: benchmark_indices_mapping.json
Benchmark: benchmark_iterating.json
Benchmark: benchmark_map_filter.json
Show updated benchmarks!Benchmark: benchmark_array_xd.json
Benchmark: benchmark_getitem_100B.json
Benchmark: benchmark_indices_mapping.json
Benchmark: benchmark_iterating.json
Benchmark: benchmark_map_filter.json
|
Show benchmarksPyArrow==8.0.0 Show updated benchmarks!Benchmark: benchmark_array_xd.json
Benchmark: benchmark_getitem_100B.json
Benchmark: benchmark_indices_mapping.json
Benchmark: benchmark_iterating.json
Benchmark: benchmark_map_filter.json
Show updated benchmarks!Benchmark: benchmark_array_xd.json
Benchmark: benchmark_getitem_100B.json
Benchmark: benchmark_indices_mapping.json
Benchmark: benchmark_iterating.json
Benchmark: benchmark_map_filter.json
|
Show benchmarksPyArrow==8.0.0 Show updated benchmarks!Benchmark: benchmark_array_xd.json
Benchmark: benchmark_getitem_100B.json
Benchmark: benchmark_indices_mapping.json
Benchmark: benchmark_iterating.json
Benchmark: benchmark_map_filter.json
Show updated benchmarks!Benchmark: benchmark_array_xd.json
Benchmark: benchmark_getitem_100B.json
Benchmark: benchmark_indices_mapping.json
Benchmark: benchmark_iterating.json
Benchmark: benchmark_map_filter.json
|
Show benchmarksPyArrow==8.0.0 Show updated benchmarks!Benchmark: benchmark_array_xd.json
Benchmark: benchmark_getitem_100B.json
Benchmark: benchmark_indices_mapping.json
Benchmark: benchmark_iterating.json
Benchmark: benchmark_map_filter.json
Show updated benchmarks!Benchmark: benchmark_array_xd.json
Benchmark: benchmark_getitem_100B.json
Benchmark: benchmark_indices_mapping.json
Benchmark: benchmark_iterating.json
Benchmark: benchmark_map_filter.json
|
Show benchmarksPyArrow==8.0.0 Show updated benchmarks!Benchmark: benchmark_array_xd.json
Benchmark: benchmark_getitem_100B.json
Benchmark: benchmark_indices_mapping.json
Benchmark: benchmark_iterating.json
Benchmark: benchmark_map_filter.json
Show updated benchmarks!Benchmark: benchmark_array_xd.json
Benchmark: benchmark_getitem_100B.json
Benchmark: benchmark_indices_mapping.json
Benchmark: benchmark_iterating.json
Benchmark: benchmark_map_filter.json
|
Show benchmarksPyArrow==8.0.0 Show updated benchmarks!Benchmark: benchmark_array_xd.json
Benchmark: benchmark_getitem_100B.json
Benchmark: benchmark_indices_mapping.json
Benchmark: benchmark_iterating.json
Benchmark: benchmark_map_filter.json
Show updated benchmarks!Benchmark: benchmark_array_xd.json
Benchmark: benchmark_getitem_100B.json
Benchmark: benchmark_indices_mapping.json
Benchmark: benchmark_iterating.json
Benchmark: benchmark_map_filter.json
|
Show benchmarksPyArrow==8.0.0 Show updated benchmarks!Benchmark: benchmark_array_xd.json
Benchmark: benchmark_getitem_100B.json
Benchmark: benchmark_indices_mapping.json
Benchmark: benchmark_iterating.json
Benchmark: benchmark_map_filter.json
Show updated benchmarks!Benchmark: benchmark_array_xd.json
Benchmark: benchmark_getitem_100B.json
Benchmark: benchmark_indices_mapping.json
Benchmark: benchmark_iterating.json
Benchmark: benchmark_map_filter.json
|
Show benchmarksPyArrow==8.0.0 Show updated benchmarks!Benchmark: benchmark_array_xd.json
Benchmark: benchmark_getitem_100B.json
Benchmark: benchmark_indices_mapping.json
Benchmark: benchmark_iterating.json
Benchmark: benchmark_map_filter.json
Show updated benchmarks!Benchmark: benchmark_array_xd.json
Benchmark: benchmark_getitem_100B.json
Benchmark: benchmark_indices_mapping.json
Benchmark: benchmark_iterating.json
Benchmark: benchmark_map_filter.json
|
@alvarobartt @lhoestq This should be ready for re-review. I've rebased it on the recent PR to allow Having a variety of different methods like this is annoying, but once our minimum Python version is 3.8 I can go back and clear a lot of this out! |
@@ -173,6 +174,21 @@ def dataset_to_tf( | |||
else: | |||
raise ImportError("Called a Tensorflow-specific function but Tensorflow is not installed.") | |||
|
|||
# TODO Matt: When our minimum Python version is 3.8 or higher, we can delete all of this and move everything |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Hi Matt, is datasets
going to drop Python 3.7 support due to its upcoming EOL? Because it will happen by the end of the month in case we want to wait and set the minimum version to 3.8, even though I assume some users may still be using 3.7?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
it will probably depend on what transformers
does
LGTM @Rocketknight1! I may run some tests during the weekend to compare performances with the current approach in case that's useful 😄 |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
lgtm :) feel free to run some tests before merging though
@alvarobartt I'll probably merge now, just to avoid the major memory usage issues we currently have! Feel free to run the comparisons before/after the commit. |
And yes, hopefully Py3.7 goes EOL and we make Py3.8 the minimum soon to resolve this. |
I'll ping you back with the comparison this weekend! 🤗 |
Show benchmarksPyArrow==8.0.0 Show updated benchmarks!Benchmark: benchmark_array_xd.json
Benchmark: benchmark_getitem_100B.json
Benchmark: benchmark_indices_mapping.json
Benchmark: benchmark_iterating.json
Benchmark: benchmark_map_filter.json
Show updated benchmarks!Benchmark: benchmark_array_xd.json
Benchmark: benchmark_getitem_100B.json
Benchmark: benchmark_indices_mapping.json
Benchmark: benchmark_iterating.json
Benchmark: benchmark_map_filter.json
|
This PR tries out a new approach to generating the index tensor in
to_tf_dataset
, which should reduce memory usage for very large datasets. I'll need to do some testing before merging it!Fixes #5855