Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Prepare tests for hfh 0.14 #5788

Merged
merged 7 commits into from
Apr 25, 2023
Merged

Prepare tests for hfh 0.14 #5788

merged 7 commits into from
Apr 25, 2023

Conversation

Wauplin
Copy link
Contributor

@Wauplin Wauplin commented Apr 24, 2023

Related to the coming release of huggingface_hub==0.14.0. It will break some internal tests. The PR fixes these tests. Let's double-check the CI but I expect the fixed tests to be running fine with both hfh<=0.13.4 and hfh==0.14. Worth case scenario, existing PRs will have to be rebased once this fix is merged.

See related discussion (private slack).

cc @lhoestq

@HuggingFaceDocBuilderDev
Copy link

HuggingFaceDocBuilderDev commented Apr 24, 2023

The documentation is not available anymore as the PR was closed or merged.

@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.007343 / 0.011353 (-0.004010) 0.005145 / 0.011008 (-0.005863) 0.099820 / 0.038508 (0.061312) 0.033487 / 0.023109 (0.010378) 0.313069 / 0.275898 (0.037171) 0.335420 / 0.323480 (0.011940) 0.005959 / 0.007986 (-0.002027) 0.005373 / 0.004328 (0.001044) 0.076568 / 0.004250 (0.072317) 0.048702 / 0.037052 (0.011650) 0.322957 / 0.258489 (0.064468) 0.363044 / 0.293841 (0.069203) 0.035070 / 0.128546 (-0.093476) 0.012029 / 0.075646 (-0.063618) 0.334664 / 0.419271 (-0.084607) 0.050549 / 0.043533 (0.007017) 0.310113 / 0.255139 (0.054974) 0.324405 / 0.283200 (0.041205) 0.097596 / 0.141683 (-0.044087) 1.440741 / 1.452155 (-0.011414) 1.531194 / 1.492716 (0.038478)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.220799 / 0.018006 (0.202793) 0.438158 / 0.000490 (0.437668) 0.007737 / 0.000200 (0.007537) 0.000082 / 0.000054 (0.000027)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.026888 / 0.037411 (-0.010523) 0.106281 / 0.014526 (0.091755) 0.117419 / 0.176557 (-0.059138) 0.179144 / 0.737135 (-0.557992) 0.122477 / 0.296338 (-0.173861)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.412667 / 0.215209 (0.197458) 4.108784 / 2.077655 (2.031129) 1.834300 / 1.504120 (0.330180) 1.627256 / 1.541195 (0.086061) 1.691036 / 1.468490 (0.222546) 0.713405 / 4.584777 (-3.871372) 3.839262 / 3.745712 (0.093550) 2.108453 / 5.269862 (-3.161408) 1.340740 / 4.565676 (-3.224936) 0.087776 / 0.424275 (-0.336499) 0.012730 / 0.007607 (0.005123) 0.505323 / 0.226044 (0.279279) 5.085176 / 2.268929 (2.816247) 2.307165 / 55.444624 (-53.137459) 1.936771 / 6.876477 (-4.939706) 2.097391 / 2.142072 (-0.044681) 0.856215 / 4.805227 (-3.949012) 0.171826 / 6.500664 (-6.328838) 0.066603 / 0.075469 (-0.008866)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.202126 / 1.841788 (-0.639661) 15.173598 / 8.074308 (7.099290) 15.012645 / 10.191392 (4.821253) 0.162187 / 0.680424 (-0.518237) 0.017462 / 0.534201 (-0.516739) 0.423895 / 0.579283 (-0.155388) 0.432010 / 0.434364 (-0.002354) 0.503234 / 0.540337 (-0.037104) 0.598948 / 1.386936 (-0.787988)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.007099 / 0.011353 (-0.004254) 0.005167 / 0.011008 (-0.005841) 0.075551 / 0.038508 (0.037043) 0.033050 / 0.023109 (0.009940) 0.339629 / 0.275898 (0.063731) 0.380486 / 0.323480 (0.057006) 0.005776 / 0.007986 (-0.002209) 0.004029 / 0.004328 (-0.000299) 0.075074 / 0.004250 (0.070823) 0.046709 / 0.037052 (0.009656) 0.340203 / 0.258489 (0.081714) 0.380849 / 0.293841 (0.087008) 0.035027 / 0.128546 (-0.093519) 0.012226 / 0.075646 (-0.063420) 0.087525 / 0.419271 (-0.331747) 0.049361 / 0.043533 (0.005828) 0.341854 / 0.255139 (0.086715) 0.359590 / 0.283200 (0.076390) 0.100102 / 0.141683 (-0.041581) 1.482759 / 1.452155 (0.030605) 1.569905 / 1.492716 (0.077189)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.213615 / 0.018006 (0.195609) 0.441117 / 0.000490 (0.440628) 0.004932 / 0.000200 (0.004732) 0.000093 / 0.000054 (0.000038)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.031313 / 0.037411 (-0.006098) 0.110191 / 0.014526 (0.095665) 0.125320 / 0.176557 (-0.051237) 0.177658 / 0.737135 (-0.559477) 0.127928 / 0.296338 (-0.168410)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.426952 / 0.215209 (0.211743) 4.247731 / 2.077655 (2.170076) 2.107318 / 1.504120 (0.603198) 1.843845 / 1.541195 (0.302650) 1.894822 / 1.468490 (0.426332) 0.696232 / 4.584777 (-3.888545) 3.826516 / 3.745712 (0.080804) 2.126688 / 5.269862 (-3.143174) 1.327062 / 4.565676 (-3.238615) 0.085693 / 0.424275 (-0.338582) 0.012226 / 0.007607 (0.004619) 0.521904 / 0.226044 (0.295859) 5.219798 / 2.268929 (2.950869) 2.524908 / 55.444624 (-52.919716) 2.212078 / 6.876477 (-4.664399) 2.373944 / 2.142072 (0.231871) 0.833846 / 4.805227 (-3.971381) 0.169639 / 6.500664 (-6.331025) 0.064538 / 0.075469 (-0.010931)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.254930 / 1.841788 (-0.586858) 15.585277 / 8.074308 (7.510969) 14.762857 / 10.191392 (4.571465) 0.146959 / 0.680424 (-0.533465) 0.017451 / 0.534201 (-0.516750) 0.424469 / 0.579283 (-0.154814) 0.422359 / 0.434364 (-0.012004) 0.489930 / 0.540337 (-0.050408) 0.595856 / 1.386936 (-0.791080)

Copy link
Member

@albertvillanova albertvillanova left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks for taking care of the fixes in our CI.

@@ -7,6 +7,7 @@ on:
push:
branches:
- main
- test-hfh*
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think this can be removed.

Copy link
Member

@albertvillanova albertvillanova left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

EDIT:
Maybe we should first be sure it works fine with hfh<0.14.

@Wauplin
Copy link
Contributor Author

Wauplin commented Apr 25, 2023

@albertvillanova thanks for the review. As you prefer for the github CI config. I just took it from @lhoestq's branch when testing hfh==0.14.0. I think it's still relevant for next releases. In any case, I let you handle merging the PR :)

@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.008371 / 0.011353 (-0.002982) 0.005210 / 0.011008 (-0.005798) 0.105639 / 0.038508 (0.067131) 0.045903 / 0.023109 (0.022794) 0.391231 / 0.275898 (0.115333) 0.438824 / 0.323480 (0.115345) 0.006270 / 0.007986 (-0.001715) 0.005950 / 0.004328 (0.001621) 0.079685 / 0.004250 (0.075434) 0.052121 / 0.037052 (0.015069) 0.387787 / 0.258489 (0.129298) 0.434322 / 0.293841 (0.140481) 0.032598 / 0.128546 (-0.095948) 0.012126 / 0.075646 (-0.063520) 0.359658 / 0.419271 (-0.059613) 0.046686 / 0.043533 (0.003154) 0.391973 / 0.255139 (0.136834) 0.421149 / 0.283200 (0.137949) 0.105920 / 0.141683 (-0.035763) 1.483008 / 1.452155 (0.030854) 1.617010 / 1.492716 (0.124294)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.199111 / 0.018006 (0.181105) 0.407995 / 0.000490 (0.407505) 0.006706 / 0.000200 (0.006506) 0.000229 / 0.000054 (0.000175)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.030247 / 0.037411 (-0.007164) 0.115977 / 0.014526 (0.101451) 0.118112 / 0.176557 (-0.058444) 0.182710 / 0.737135 (-0.554426) 0.122483 / 0.296338 (-0.173855)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.430455 / 0.215209 (0.215246) 4.314298 / 2.077655 (2.236643) 1.898124 / 1.504120 (0.394005) 1.734909 / 1.541195 (0.193715) 1.802400 / 1.468490 (0.333910) 0.717237 / 4.584777 (-3.867539) 4.004705 / 3.745712 (0.258993) 2.138901 / 5.269862 (-3.130960) 1.254037 / 4.565676 (-3.311640) 0.085594 / 0.424275 (-0.338681) 0.013774 / 0.007607 (0.006166) 0.535218 / 0.226044 (0.309174) 5.373730 / 2.268929 (3.104801) 2.371194 / 55.444624 (-53.073430) 2.111206 / 6.876477 (-4.765270) 2.225137 / 2.142072 (0.083064) 0.838325 / 4.805227 (-3.966902) 0.159176 / 6.500664 (-6.341488) 0.072285 / 0.075469 (-0.003184)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.352232 / 1.841788 (-0.489555) 16.926722 / 8.074308 (8.852414) 16.709531 / 10.191392 (6.518139) 0.159249 / 0.680424 (-0.521175) 0.017667 / 0.534201 (-0.516534) 0.426894 / 0.579283 (-0.152390) 0.539903 / 0.434364 (0.105539) 0.537471 / 0.540337 (-0.002866) 0.619592 / 1.386936 (-0.767344)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.008354 / 0.011353 (-0.002999) 0.005366 / 0.011008 (-0.005642) 0.080961 / 0.038508 (0.042453) 0.046574 / 0.023109 (0.023465) 0.345949 / 0.275898 (0.070051) 0.394041 / 0.323480 (0.070562) 0.006209 / 0.007986 (-0.001777) 0.005980 / 0.004328 (0.001651) 0.076235 / 0.004250 (0.071984) 0.051833 / 0.037052 (0.014780) 0.348786 / 0.258489 (0.090297) 0.397421 / 0.293841 (0.103580) 0.033026 / 0.128546 (-0.095520) 0.012217 / 0.075646 (-0.063429) 0.087439 / 0.419271 (-0.331832) 0.045488 / 0.043533 (0.001955) 0.352160 / 0.255139 (0.097021) 0.379079 / 0.283200 (0.095879) 0.116111 / 0.141683 (-0.025572) 1.470177 / 1.452155 (0.018022) 1.587499 / 1.492716 (0.094783)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.296149 / 0.018006 (0.278143) 0.592362 / 0.000490 (0.591872) 0.000492 / 0.000200 (0.000292) 0.000064 / 0.000054 (0.000010)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.036599 / 0.037411 (-0.000813) 0.113768 / 0.014526 (0.099242) 0.116198 / 0.176557 (-0.060358) 0.180329 / 0.737135 (-0.556806) 0.123942 / 0.296338 (-0.172396)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.452445 / 0.215209 (0.237236) 4.504330 / 2.077655 (2.426675) 2.275645 / 1.504120 (0.771525) 2.107765 / 1.541195 (0.566571) 2.086363 / 1.468490 (0.617873) 0.723721 / 4.584777 (-3.861056) 3.825330 / 3.745712 (0.079618) 2.162743 / 5.269862 (-3.107119) 1.255953 / 4.565676 (-3.309724) 0.085860 / 0.424275 (-0.338415) 0.013790 / 0.007607 (0.006183) 0.560257 / 0.226044 (0.334213) 5.618180 / 2.268929 (3.349251) 2.625423 / 55.444624 (-52.819202) 2.374381 / 6.876477 (-4.502095) 2.496560 / 2.142072 (0.354488) 0.841120 / 4.805227 (-3.964107) 0.161541 / 6.500664 (-6.339123) 0.075270 / 0.075469 (-0.000199)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.432916 / 1.841788 (-0.408872) 14.858534 / 8.074308 (6.784226) 14.973521 / 10.191392 (4.782129) 0.148312 / 0.680424 (-0.532112) 0.016811 / 0.534201 (-0.517390) 0.382623 / 0.579283 (-0.196660) 0.389767 / 0.434364 (-0.044596) 0.449657 / 0.540337 (-0.090680) 0.533723 / 1.386936 (-0.853214)

@albertvillanova
Copy link
Member

I agree it is good to have a way to run the CI on push, without needing to open a PR.

But I think the branch name should be more generic (and this is not specific to this PR). See:

@albertvillanova albertvillanova merged commit c6015a0 into main Apr 25, 2023
@albertvillanova albertvillanova deleted the prepare-tests-for-hfh-0.14 branch April 25, 2023 14:25
@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.007208 / 0.011353 (-0.004145) 0.005600 / 0.011008 (-0.005408) 0.096129 / 0.038508 (0.057621) 0.027834 / 0.023109 (0.004725) 0.295106 / 0.275898 (0.019208) 0.323983 / 0.323480 (0.000503) 0.005164 / 0.007986 (-0.002822) 0.003962 / 0.004328 (-0.000366) 0.078339 / 0.004250 (0.074089) 0.036974 / 0.037052 (-0.000078) 0.310315 / 0.258489 (0.051826) 0.338036 / 0.293841 (0.044195) 0.042124 / 0.128546 (-0.086422) 0.015886 / 0.075646 (-0.059760) 0.337961 / 0.419271 (-0.081310) 0.051507 / 0.043533 (0.007974) 0.297505 / 0.255139 (0.042366) 0.310728 / 0.283200 (0.027528) 0.086312 / 0.141683 (-0.055371) 1.356923 / 1.452155 (-0.095232) 1.429366 / 1.492716 (-0.063350)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.205495 / 0.018006 (0.187489) 0.460639 / 0.000490 (0.460149) 0.003996 / 0.000200 (0.003796) 0.000093 / 0.000054 (0.000038)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.021970 / 0.037411 (-0.015442) 0.090283 / 0.014526 (0.075757) 0.098579 / 0.176557 (-0.077978) 0.160437 / 0.737135 (-0.576699) 0.102738 / 0.296338 (-0.193600)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.494474 / 0.215209 (0.279265) 4.967453 / 2.077655 (2.889799) 2.045852 / 1.504120 (0.541732) 1.858022 / 1.541195 (0.316827) 1.771874 / 1.468490 (0.303384) 1.186368 / 4.584777 (-3.398408) 4.974762 / 3.745712 (1.229050) 2.616225 / 5.269862 (-2.653636) 1.702971 / 4.565676 (-2.862705) 0.124929 / 0.424275 (-0.299346) 0.011774 / 0.007607 (0.004167) 0.569643 / 0.226044 (0.343598) 5.793114 / 2.268929 (3.524186) 2.441561 / 55.444624 (-53.003064) 1.862233 / 6.876477 (-5.014243) 1.931142 / 2.142072 (-0.210931) 1.148915 / 4.805227 (-3.656313) 0.203914 / 6.500664 (-6.296750) 0.062468 / 0.075469 (-0.013001)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.188708 / 1.841788 (-0.653080) 13.710830 / 8.074308 (5.636522) 15.695153 / 10.191392 (5.503761) 0.171467 / 0.680424 (-0.508957) 0.024509 / 0.534201 (-0.509692) 0.450270 / 0.579283 (-0.129014) 0.500712 / 0.434364 (0.066348) 0.488632 / 0.540337 (-0.051706) 0.574893 / 1.386936 (-0.812043)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.007254 / 0.011353 (-0.004099) 0.006199 / 0.011008 (-0.004809) 0.072079 / 0.038508 (0.033571) 0.026909 / 0.023109 (0.003800) 0.355538 / 0.275898 (0.079640) 0.358625 / 0.323480 (0.035145) 0.005564 / 0.007986 (-0.002421) 0.005278 / 0.004328 (0.000950) 0.076469 / 0.004250 (0.072219) 0.038269 / 0.037052 (0.001216) 0.355214 / 0.258489 (0.096725) 0.383219 / 0.293841 (0.089378) 0.046516 / 0.128546 (-0.082030) 0.015393 / 0.075646 (-0.060254) 0.088506 / 0.419271 (-0.330765) 0.050326 / 0.043533 (0.006793) 0.327265 / 0.255139 (0.072126) 0.370176 / 0.283200 (0.086976) 0.102438 / 0.141683 (-0.039245) 1.378969 / 1.452155 (-0.073186) 1.441998 / 1.492716 (-0.050719)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.209044 / 0.018006 (0.191038) 0.455733 / 0.000490 (0.455243) 0.005856 / 0.000200 (0.005656) 0.000116 / 0.000054 (0.000061)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.025336 / 0.037411 (-0.012075) 0.097449 / 0.014526 (0.082923) 0.106301 / 0.176557 (-0.070255) 0.153053 / 0.737135 (-0.584082) 0.107938 / 0.296338 (-0.188401)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.491070 / 0.215209 (0.275861) 5.049637 / 2.077655 (2.971982) 2.064709 / 1.504120 (0.560589) 1.782266 / 1.541195 (0.241072) 1.798570 / 1.468490 (0.330080) 0.988886 / 4.584777 (-3.595891) 4.690324 / 3.745712 (0.944612) 4.317355 / 5.269862 (-0.952507) 2.347596 / 4.565676 (-2.218081) 0.117249 / 0.424275 (-0.307026) 0.011614 / 0.007607 (0.004007) 0.630033 / 0.226044 (0.403988) 6.140108 / 2.268929 (3.871180) 2.638080 / 55.444624 (-52.806545) 2.133017 / 6.876477 (-4.743459) 2.123392 / 2.142072 (-0.018680) 1.178056 / 4.805227 (-3.627171) 0.209465 / 6.500664 (-6.291199) 0.063234 / 0.075469 (-0.012235)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.238089 / 1.841788 (-0.603699) 14.066866 / 8.074308 (5.992558) 16.225480 / 10.191392 (6.034088) 0.206466 / 0.680424 (-0.473958) 0.027279 / 0.534201 (-0.506922) 0.443006 / 0.579283 (-0.136277) 0.509512 / 0.434364 (0.075148) 0.479075 / 0.540337 (-0.061263) 0.573546 / 1.386936 (-0.813390)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

4 participants