-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Working on update_curve_data function.
- Loading branch information
Hefin Rhys
committed
Apr 8, 2024
1 parent
ee6ff94
commit 3647ddb
Showing
3 changed files
with
58 additions
and
30 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,68 +1,96 @@ | ||
lapply(names(fits), function(x) { | ||
update_well_data <- function(.summary_data, .well_data, .fits, .standard_list, .silent) { | ||
|
||
lapply(names(.fits), function(x) { | ||
|
||
lloq <- dplyr::filter( | ||
u5plex@summary_data, | ||
.summary_data, | ||
Analyte == x, | ||
Type == "Standard", | ||
Result_CV <= 0.2, | ||
dplyr::n() > 1, | ||
Result_Avg / Expected > 0.8, | ||
Result_Avg / Expected < 1.2 | ||
) |> | ||
dplyr::pull(Expected) |> | ||
min() | ||
|
||
blank <- dplyr::filter( | ||
u5plex@well_data, | ||
.summary_data, | ||
Analyte == x, | ||
Type == "Standard", | ||
Expected == 0 | ||
) |> | ||
dplyr::pull(MFI) | ||
) | ||
|
||
blank_targets <- | ||
(mean(blank) + 2.5*sd(blank)) / | ||
max(dplyr::filter(u5plex@well_data, Analyte == x)$MFI) | ||
analyte <- dplyr::filter(.well_data, Analyte == x) | ||
analyte <- analyte[!analyte$Excluded, ] | ||
standard <- dplyr::filter(analyte, Type == "Standard") | ||
|
||
blank_targets <- (blank$MFI_Avg + 2.5 * blank$MFI_SD) / max(standard$MFI) | ||
|
||
suppressWarnings({ | ||
suppressMessages({ | ||
mdd <- nplr::getEstimates( | ||
fits[[x]], | ||
.fits[[x]], | ||
targets = blank_targets | ||
)$x | ||
}) | ||
}) | ||
|
||
df_low <- data.frame( | ||
x = 10^(fits[[x]]@x), | ||
y = fits[[x]]@y | ||
)[10^(fits[[x]]@x) %in% unique(10^(fits[[x]]@x))[1:3],] | ||
x = 10^(.fits[[x]]@x), | ||
y = .fits[[x]]@y | ||
)[10^(.fits[[x]]@x) %in% unique(10^(.fits[[x]]@x))[2:4],] | ||
|
||
fit_low <- nplr::nplr( | ||
x = df_low$x, | ||
y = df_low$y#, | ||
# npars = npars, | ||
# method = weight_method, | ||
# LPweight = LPweight, | ||
# silent = silent | ||
y = df_low$y, | ||
silent = TRUE | ||
) | ||
|
||
suppressWarnings({ | ||
suppressMessages({ | ||
lod <- nplr::getEstimates( | ||
fit_low, | ||
targets = blank_targets | ||
)$x | ||
lod <- nplr::getEstimates(fit_low, targets = blank_targets)$x | ||
}) | ||
}) | ||
|
||
if(!silent) { | ||
warning("LLoQ, MDD, and LoD may be calculated differently than in Belysa. See ?refit_curves for details.") | ||
} | ||
|
||
if(.fits[[x]]@weightMethod == "res") { | ||
weight_meth <- paste0("(1/residual)^", .fits[[x]]@LPweight) | ||
} else if(.fits[[x]]@weightMethod == "sdw") { | ||
weight_meth <- "1/Var(y)" | ||
} else if(.fits[[x]]@weightMethod == "gw") { | ||
weight_meth <- paste0("1/fitted^", .fits[[x]]@LPweight) | ||
} | ||
|
||
model_eqn <- paste0( | ||
"y = ", | ||
.fits[[x]]@pars["bottom"], | ||
" + (", | ||
.fits[[x]]@pars["top"], | ||
" - ", | ||
.fits[[x]]@pars["bottom"], | ||
") / (1 + 10^(", | ||
.fits[[x]]@pars["bottom"], | ||
" * (", | ||
.fits[[x]]@pars["xmid"], | ||
" - x)))^", | ||
.fits[[x]]@pars["s"] | ||
) | ||
|
||
tibble::tibble( | ||
Group = analyte$Group, | ||
Analyte = x, | ||
Fit = paste0("nplr ", fits[[x]]@npars, "PL"), | ||
Fit = paste0("nplr ", .fits[[x]]@npars, "PL"), | ||
LLoQ = lloq, | ||
MDD = mdd, | ||
LoD = lod, | ||
`R Squared` = fits[[x]]@goodness$gof, | ||
Slope = fits[[x]]@pars$s | ||
`R Squared` = .fits[[x]]@goodness$gof, | ||
Slope = .fits[[x]]@pars$s, | ||
Weighting = weight_meth, | ||
Equation = model_eqn | ||
) | ||
}) |> dplyr::bind_rows() | ||
|
||
} |