Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[moe] add parallel strategy for shared_expert && fix test for deepseek #6063

Merged
merged 1 commit into from
Sep 18, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 13 additions & 0 deletions colossalai/shardformer/modeling/deepseek.py
Original file line number Diff line number Diff line change
Expand Up @@ -109,6 +109,19 @@ def setup_process_groups(
for p in self.experts.parameters():
set_moe_tensor_ep_group(p, ep_group)

if self.config.n_shared_experts is not None:
self.shared_experts.gate_proj = Linear1D_Col.from_native_module(
self.shared_experts.gate_proj, self.tp_group, fp8_communication=self.fp8_communication
)

self.shared_experts.up_proj = Linear1D_Col.from_native_module(
self.shared_experts.up_proj, self.tp_group, fp8_communication=self.fp8_communication
)

self.shared_experts.down_proj = Linear1D_Row.from_native_module(
self.shared_experts.down_proj, self.tp_group, fp8_communication=self.fp8_communication
)

@staticmethod
def from_native_module(
module,
Expand Down
10 changes: 6 additions & 4 deletions tests/test_shardformer/test_model/test_shard_deepseek.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,14 +20,15 @@
NUM_BATCH = 8
NUM_TOK_PER_BATCH, NUM_EXPERTS = 64, 4
NUM_LAYERS = 4
HIDDEN_SIZE_PER_HEAD = 4
HIDDEN_SIZE_PER_HEAD = 8
NUM_HEADS = 8
TOP_K = 2


def run_deepseek_commom(config: Tuple[int, ...]):
def run_deepseek_commom(parallel_config: Tuple[int, ...]):
Randomizer.reset_index()
stage, ep_size, pp_size, tp_size, sp_size = config
print(f"rank {dist.get_rank()} testing {parallel_config}")
stage, ep_size, pp_size, tp_size, sp_size = parallel_config
world_size = dist.get_world_size()
rank = dist.get_rank()
dtype, precision = torch.bfloat16, "bf16"
Expand Down Expand Up @@ -65,6 +66,7 @@ def run_deepseek_commom(config: Tuple[int, ...]):
attn_implementation="flash_attention_2",
torch_dtype="float16",
n_routed_experts=NUM_EXPERTS,
n_shared_experts=2,
num_experts_per_tok=TOP_K,
trust_remote_code=True,
)
Expand Down Expand Up @@ -159,7 +161,7 @@ def run_deepseek_commom(config: Tuple[int, ...]):
if rank == world_size - 1:
shutil.rmtree(model_dir)

print(f"rank {dist.get_rank()} test passed")
print(f"rank {dist.get_rank()} passed {parallel_config}")


@parameterize(
Expand Down
Loading