Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Feature] MoE Ulysses Support #5918

Merged
merged 3 commits into from
Jul 18, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
52 changes: 46 additions & 6 deletions colossalai/booster/plugin/moe_hybrid_parallel_plugin.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,6 @@
import warnings
from collections import defaultdict
from copy import deepcopy
from types import MethodType
from typing import Callable, Optional, OrderedDict, Tuple

Expand All @@ -22,6 +24,8 @@
)
from colossalai.checkpoint_io import MoECheckpointIO
from colossalai.interface import ModelWrapper, OptimizerWrapper
from colossalai.interface.optimizer import DistributedOptim
from colossalai.nn.optimizer import cast_to_distributed
from colossalai.tensor.moe_tensor.api import is_moe_tensor


Expand Down Expand Up @@ -114,21 +118,25 @@ def __init__(self, ep_size: int, moe_tp_size: int = 1, force_overlap_comm=False,
self.ddp_config["find_unused_parameters"] = True

world_size = dist.get_world_size()
self.moe_dp_size = world_size // (self.pp_size * ep_size * moe_tp_size)
self.moe_dp_size = world_size // (self.pp_size * ep_size * moe_tp_size * self.sp_size)
self.ep_size = ep_size
self.moe_tp_size = moe_tp_size

if self.pp_size * self.moe_dp_size * self.ep_size * self.moe_tp_size != world_size:
if self.pp_size * self.moe_dp_size * self.ep_size * self.moe_tp_size * self.sp_size != world_size:
raise ValueError(
f"world_size={world_size} is not divisible by pp_size={self.pp_size} * moe_dp_size={self.moe_dp_size} * ep_size={self.ep_size} * moe_tp_size={self.moe_tp_size}"
)

self._init_moe_param_comm()
# self._init_moe_param_comm()

self.logger.info(f"{type(self).__name__}: {self.ep_size=} {self.moe_dp_size=} {self.moe_tp_size=}", ranks=[0])

# set ep_group after super init
# TODO do it in a better way
self.moe_dp_group = self.pp_group
self.ep_group = self.pp_group
self.moe_tp_group = self.pp_group

self.shard_config.ep_group = self.ep_group
self.shard_config.moe_dp_group = self.moe_dp_group
self.shard_config.moe_tp_group = self.moe_tp_group
Expand Down Expand Up @@ -205,15 +213,32 @@ def configure(
lr_scheduler: Optional[LRScheduler] = None,
) -> Tuple[Module, OptimizerWrapper, Callable, DataLoader, LRScheduler]:
param_info = get_param_info(optimizer)

# TODO: Support Galore + ZeRO
self.zero_stage
deepcopy(self.zero_config)
# Replace with distributed implementation if exists
optimizer = cast_to_distributed(optimizer)

if not isinstance(model, ModelWrapper):
use_ddp = (self.dp_size > 1 and self.pp_size == 1 and self.zero_stage == 0) or (
self.dp_size == 1
and self.pp_size == 1
and self.enable_sequence_parallelism
and self.sequence_parallelism_mode == "all_to_all"
)
if self.enable_sequence_parallelism and self.sequence_parallelism_mode == "all_to_all":
dp_group = self.pg_mesh.create_group_along_axis([self.dp_axis, self.sp_axis])
else:
dp_group = self.dp_group
model = HybridParallelModule(
module=model,
precision=self.precision,
shard_config=self.shard_config,
dp_group=self.dp_group,
dp_group=dp_group,
tp_group=self.tp_group,
sp_group=self.sp_group,
use_ddp=self.use_ddp,
use_ddp=use_ddp,
ddp_config=self.ddp_config,
custom_policy=self.custom_policy,
)
Expand All @@ -224,6 +249,7 @@ def configure(
reinitialize_optimizer(optimizer, model)

if self.zero_stage == 0:
is_zero = False
if self.precision in ["fp16", "bf16"]:
optimizer = HybridParallelAMPOptimizer(
optimizer,
Expand All @@ -236,14 +262,21 @@ def configure(
)
else:
optimizer = HybridParallelNaiveOptimizer(
optimizer, model, use_pipeline=self.enable_pipeline_parallelism, param_info=param_info
optimizer,
model,
use_pipeline=self.enable_pipeline_parallelism,
param_info=param_info,
max_norm=self.max_norm,
pp_process_group=self.pp_group,
tp_process_group=self.tp_group,
)
else:
if not (self.dp_size > 1 or self.moe_dp_size > 1):
warnings.warn(
"Use Zero Optimizer when data parallel size is 1 may introduce unnecessary overhead. "
"If you do not intend to use cpu_offload, please consider set zero_stage=0."
)
assert self.precision != "fp32", "Please set precision to 'fp16' or 'bf16' when using ZeRO."
optimizer = MoeHybridParallelZeroOptimizer(
optimizer,
model,
Expand All @@ -262,4 +295,11 @@ def configure(
# inject update_master_params
model.update_master_params = MethodType(optimizer.update_master_params, model)

# Setup optimizers that require global states
optim = optimizer.optim
if isinstance(optim, DistributedOptim):
shard_to_param = optimizer.get_master_to_working_map() if is_zero else {}
padding_map = optimizer.get_param_padding_map() if is_zero else defaultdict(int)
optim.setup_distributed(self.tp_group, self.dp_group, shard_to_param, padding_map, is_zero)

return model, optimizer, criterion, dataloader, lr_scheduler
8 changes: 6 additions & 2 deletions colossalai/cluster/process_group_mesh.py
Original file line number Diff line number Diff line change
Expand Up @@ -209,7 +209,7 @@ def create_group_along_axis(
axis: Union[int, List[int]],
indices_at_axis: Optional[Union[List[int], List[List[int]]]] = None,
backend: Optional[str] = None,
return_ranks_by_group: bool = False
return_ranks_by_group: bool = False,
) -> Union[ProcessGroup, List[Tuple[int, ...]]]:
"""Create all process groups along the given axis, and return the one which the current process belongs to.

Expand Down Expand Up @@ -257,7 +257,11 @@ def create_group_along_axis(
return target_group

def get_group_along_axis(
self, axis: Union[int, List[int]], indices_at_axis: Optional[List[int]] = None, backend: Optional[str] = None, return_ranks_by_group: bool = False
self,
axis: Union[int, List[int]],
indices_at_axis: Optional[List[int]] = None,
backend: Optional[str] = None,
return_ranks_by_group: bool = False,
) -> Union[ProcessGroup, List[Tuple[int, ...]]]:
"""Get the process group along the given axis which the current process belongs to. If the process group doesn't exist, it will be created.

Expand Down
Loading