Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Inference] Kernel: no pad rotary embedding #5252

Merged
merged 4 commits into from
Jan 11, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions colossalai/kernel/triton/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,11 +11,13 @@
from .context_attn_unpad import context_attention_unpadded
from .fused_layernorm import layer_norm
from .gptq_triton import gptq_fused_linear_triton
from .no_pad_rotary_embedding import rotary_embedding
from .softmax import softmax

__all__ = [
"context_attention_unpadded",
"softmax",
"layer_norm",
"gptq_fused_linear_triton",
"rotary_embedding",
]
149 changes: 149 additions & 0 deletions colossalai/kernel/triton/no_pad_rotary_embedding.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,149 @@
import torch
import triton
import triton.language as tl


@triton.jit
def rotary_embedding_kernel(
q,
k,
cos,
sin,
q_token_stride,
q_head_stride,
k_token_stride,
k_head_stride,
head_dim_stride,
cos_token_stride,
cos_stride,
q_total_tokens,
Q_HEAD_NUM: tl.constexpr,
K_HEAD_NUM: tl.constexpr,
HEAD_DIM: tl.constexpr,
BLOCK_HEAD: tl.constexpr,
BLOCK_TOKENS: tl.constexpr,
):
block_head_index = tl.program_id(0)
block_token_index = tl.program_id(1)

rotary_data = q
HEAD_NUM = Q_HEAD_NUM
head_stride = q_head_stride
token_stride = q_token_stride

if block_token_index * BLOCK_TOKENS >= q_total_tokens:
block_token_index = block_token_index - tl.cdiv(q_total_tokens, BLOCK_TOKENS)
rotary_data = k
HEAD_NUM = K_HEAD_NUM
head_stride = k_head_stride
token_stride = k_token_stride

tokens_range = block_token_index * BLOCK_TOKENS + tl.arange(0, BLOCK_TOKENS)
head_range = block_head_index * BLOCK_HEAD + tl.arange(0, BLOCK_HEAD)

dim_range0 = tl.arange(0, HEAD_DIM // 2)
dim_range1 = tl.arange(HEAD_DIM // 2, HEAD_DIM)

off_data0 = (
tokens_range[:, None, None] * token_stride
+ head_range[None, :, None] * head_stride
+ dim_range0[None, None, :] * head_dim_stride
)
off_data1 = (
tokens_range[:, None, None] * token_stride
+ head_range[None, :, None] * head_stride
+ dim_range1[None, None, :] * head_dim_stride
)

loaded_data0 = tl.load(
rotary_data + off_data0,
mask=((head_range[None, :, None] < HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
other=0.0,
)
loaded_data1 = tl.load(
rotary_data + off_data1,
mask=((head_range[None, :, None] < HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
other=0.0,
)

off_cos_sin = tokens_range[:, None] * cos_token_stride + dim_range0[None, :] * cos_stride

loaded_cos = tl.load(cos + off_cos_sin, mask=(tokens_range[:, None] < q_total_tokens), other=0.0)
loaded_sin = tl.load(sin + off_cos_sin, mask=(tokens_range[:, None] < q_total_tokens), other=0.0)

out0 = loaded_data0 * loaded_cos[:, None, :] - loaded_data1 * loaded_sin[:, None, :]
out1 = loaded_data0 * loaded_sin[:, None, :] + loaded_data1 * loaded_cos[:, None, :]

# concat
tl.store(
rotary_data + off_data0,
out0,
mask=((head_range[None, :, None] < HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
)
tl.store(
rotary_data + off_data1,
out1,
mask=((head_range[None, :, None] < HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
)


@torch.no_grad()
def rotary_embedding(
q: torch.Tensor,
k: torch.Tensor,
cos: torch.Tensor,
sin: torch.Tensor,
):
"""
Args:
q: query tensor, [total_tokens, head_num, head_dim]
k: key tensor, [total_tokens, head_num, head_dim]
cos: cosine for rotary embedding, [total_tokens, head_dim]
sin: sine for rotary embedding, [total_tokens, head_dim]
"""
q_total_tokens, q_head_num, head_dim = q.shape
assert q.shape[0] == cos.shape[0] and q.shape[0] == sin.shape[0], f"q shape {q.shape} cos shape {cos.shape}"
BLOCK_HEAD = 4
BLOCK_TOKENS = 8
grid = (triton.cdiv(q_head_num, BLOCK_HEAD), 2 * triton.cdiv(q_total_tokens, BLOCK_TOKENS))

if head_dim >= 128:
num_warps = 8
else:
num_warps = 4

q_token_stride = q.stride(0)
q_head_stride = q.stride(1)
head_dim_stride = q.stride(2)

k_token_stride = k.stride(0)
k_head_stride = k.stride(1)

k_head_num = q.shape[1]

cos_token_stride = cos.stride(0)
cos_stride = cos.stride(1)

rotary_embedding_kernel[grid](
q,
k,
cos,
sin,
q_token_stride,
q_head_stride,
k_token_stride,
k_head_stride,
head_dim_stride,
cos_token_stride,
cos_stride,
q_total_tokens,
Q_HEAD_NUM=q_head_num,
K_HEAD_NUM=k_head_num,
HEAD_DIM=head_dim,
BLOCK_HEAD=BLOCK_HEAD,
BLOCK_TOKENS=BLOCK_TOKENS,
num_warps=num_warps,
num_stages=1,
)

return
56 changes: 56 additions & 0 deletions tests/test_infer_ops/triton/test_rotary_embdding_unpad.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,56 @@
import pytest
import torch
from transformers.models.llama.modeling_llama import LlamaRotaryEmbedding, apply_rotary_pos_emb

from colossalai.kernel.triton import rotary_embedding


def torch_rotary_emb(x, cos, sin):
seq_len, h, dim = x.shape
x0 = x[:, :, 0 : dim // 2]
x1 = x[:, :, dim // 2 : dim]
cos = cos.view((seq_len, 1, dim // 2))
sin = sin.view((seq_len, 1, dim // 2))
o0 = x0 * cos - x1 * sin
o1 = x0 * sin + x1 * cos
return torch.cat((o0, o1), dim=-1)


@pytest.mark.parametrize("BATCH_SIZE", [4])
@pytest.mark.parametrize("SEQ_LEN", [64])
@pytest.mark.parametrize("H", [32])
@pytest.mark.parametrize("D", [64])
@pytest.mark.parametrize("dtype", [torch.float32])
def test_rotary_emb(BATCH_SIZE, SEQ_LEN, H, D, dtype):
TOTAL_TOKENS = BATCH_SIZE * SEQ_LEN
# our crafted op equals to Transformers
x0 = torch.randn(TOTAL_TOKENS, SEQ_LEN, D)
x1 = torch.randn(TOTAL_TOKENS, SEQ_LEN, D)
emb = LlamaRotaryEmbedding(D)
cos, sin = emb(x0, TOTAL_TOKENS)
cos_2 = cos[:, :32]
sin_2 = sin[:, :32]
position_ids = torch.arange(TOTAL_TOKENS)
embd_x0, _ = apply_rotary_pos_emb(x0, x1, cos, sin, position_ids)
embd_stimulated_x = torch_rotary_emb(x0, cos_2, sin_2)
assert torch.allclose(embd_x0, embd_stimulated_x)

# create data
q_shape = (TOTAL_TOKENS, H, D)
q = -2.3 + 0.5 * torch.randn(q_shape, dtype=dtype, device="cuda")
k_shape = (TOTAL_TOKENS, H, D)
k = -2.3 + 0.5 * torch.randn(k_shape, dtype=dtype, device="cuda")
cos_shape = (TOTAL_TOKENS, D // 2)
cos = -1.2 + 0.5 * torch.randn(cos_shape, dtype=dtype, device="cuda")
sin = -2.0 + 0.5 * torch.randn(cos_shape, dtype=dtype, device="cuda")

q_ref = torch_rotary_emb(q, cos, sin)
k_ref = torch_rotary_emb(k, cos, sin)
rotary_embedding(q, k, cos, sin)

assert torch.allclose(q, q_ref, atol=1e-4, rtol=1e-4)
assert torch.allclose(k, k_ref, atol=1e-4, rtol=1e-4)


if __name__ == "__main__":
test_rotary_emb(4, 64, 32, 64, torch.float32)