Skip to content

Commit

Permalink
move benchmark scripts to example
Browse files Browse the repository at this point in the history
  • Loading branch information
isky-cd committed Feb 28, 2024
1 parent 6607316 commit 3bbcdce
Show file tree
Hide file tree
Showing 7 changed files with 1 addition and 457 deletions.
44 changes: 1 addition & 43 deletions tests/test_infer/test_ops/cuda/test_kv_cache_memcpy.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@
from colossalai.kernel.kernel_loader import InferenceOpsLoader
from colossalai.kernel.triton import copy_kv_to_blocked_cache
from colossalai.utils import get_current_device
from tests.test_infer.test_ops.triton.kernel_utils import generate_caches_and_block_tables_v2, mock_alloc_single_token
from tests.test_infer.test_ops.triton.test_kvcache_copy import prepare_data

try:
import triton # noqa
Expand All @@ -30,45 +30,6 @@
HEAD_DIM = 4


def prepare_data(
bsz,
num_kv_heads,
head_dim,
block_size,
max_num_blocks_per_seq,
same_context_len,
max_seq_len,
device,
dtype=torch.float32,
):
# past_kv_seq_lengths in this test records the previous kv seq len
# (not incorporating the current input whose seq len is 1)
past_kv_seq_lengths = (
torch.tensor([max_seq_len - 1 for _ in range(bsz)], dtype=torch.int32, device=device)
if same_context_len
else torch.randint(low=1, high=max_seq_len - 1, size=(bsz,), dtype=torch.int32, device=device)
)
num_tokens = torch.sum(past_kv_seq_lengths).item()

kv_size = (num_tokens, 2 * num_kv_heads, head_dim)
kv_unpad = torch.empty(size=kv_size, dtype=dtype, device=device).normal_(mean=0.0, std=0.5)
k_unpad, v_unpad = torch.split(kv_unpad, [num_kv_heads, num_kv_heads], dim=-2)

k_cache, v_cache, block_tables = generate_caches_and_block_tables_v2(
k_unpad, v_unpad, past_kv_seq_lengths, bsz, max_num_blocks_per_seq, block_size, dtype=dtype, device=device
)
block_tables = block_tables.to(device=device)

new_k = torch.randn((bsz, 1, num_kv_heads, head_dim), dtype=dtype, device=device)
new_v = torch.randn((bsz, 1, num_kv_heads, head_dim), dtype=dtype, device=device)
# mock allocating blocks for the new k/v and update block tables
mock_alloc_single_token(block_tables, past_kv_seq_lengths, block_size)
# kv seq len = past kv seq len + seq len (1 during decoding stage)
kv_seq_lengths = past_kv_seq_lengths + 1

return new_k, new_v, k_cache, v_cache, kv_seq_lengths, block_tables


@pytest.mark.skipif(not (HAS_TRITON and TRITON_CUDA_SUPPORT), reason="requires triton")
@pytest.mark.parametrize("bsz", [4, 7, 32])
@pytest.mark.parametrize("block_size", [16, 32, 64])
Expand Down Expand Up @@ -119,9 +80,6 @@ def test_copy_kv_to_caches(
assert torch.equal(k_target, k_source)
assert v_target.shape == v_source.shape
assert torch.equal(v_target, v_source)
# target_torch = k_cache_copy[target_block_ids, :, offsets_in_block, :]
# assert target_torch.shape == source.shape
# assert torch.equal(target_torch, source)


BATCH = 16
Expand Down
99 changes: 0 additions & 99 deletions tests/test_infer/test_ops/triton/test_context_attn_unpad.py
Original file line number Diff line number Diff line change
@@ -1,9 +1,7 @@
import pytest
import torch
from packaging import version
from transformers.modeling_attn_mask_utils import AttentionMaskConverter

from colossalai.inference.modeling.layers.attention import PagedAttention
from colossalai.kernel.triton import context_attention_unpadded
from colossalai.utils import get_current_device
from tests.test_infer.test_ops.triton.kernel_utils import generate_caches_and_block_tables_v2, torch_attn_ref
Expand Down Expand Up @@ -116,102 +114,5 @@ def test_context_attention(
assert torch.equal(v_cache_ref, v_cache_triton)


BATCH = 16
BLOCK_SIZE = 32
SAME_LEN = True
WARM_UPS = 10
REPS = 100
configs = [
triton.testing.Benchmark(
x_names=["KV_LEN"],
x_vals=[2**i for i in range(8, 13)],
# x_vals=[x for x in range(256, 8192, 256)],
line_arg="provider",
line_vals=["torch", "triton"],
line_names=["Torch", "Triton"],
styles=[("red", "-"), ("blue", "-")],
ylabel="ms",
plot_name=f"context_attn-block_size-{BLOCK_SIZE}-batch{BATCH}",
args={"bsz": BATCH, "block_size": BLOCK_SIZE, "same_context_len": SAME_LEN, "kv_group_num": 1},
)
]


@triton.testing.perf_report(configs)
def bench_kernel(
bsz,
KV_LEN,
provider,
block_size: int,
kv_group_num: int,
same_context_len: bool,
):
num_attn_heads = 16
max_num_blocks_per_seq = triton.cdiv(KV_LEN, block_size)
max_seq_len = block_size * max_num_blocks_per_seq

num_kv_heads = num_attn_heads // kv_group_num
assert isinstance(num_kv_heads, int) and num_kv_heads > 0, "Invalid number of kv heads."
dtype = torch.float16
device = get_current_device()

if same_context_len:
context_lengths = torch.tensor([max_seq_len for _ in range(bsz)], dtype=torch.int32, device=device)
else:
context_lengths = torch.randint(low=1, high=max_seq_len, size=(bsz,), dtype=torch.int32, device=device)
num_tokens = torch.sum(context_lengths).item()

qkv_size = (num_tokens, num_attn_heads + 2 * num_kv_heads, HEAD_DIM)
qkv_unpad = torch.empty(size=qkv_size, dtype=dtype, device=device).normal_(mean=0.0, std=0.5)
q_unpad, k_unpad, v_unpad = torch.split(qkv_unpad, [num_attn_heads, num_kv_heads, num_kv_heads], dim=-2)
q_unpad = q_unpad.contiguous()
k_cache_ref, v_cache_ref, block_tables = generate_caches_and_block_tables_v2(
k_unpad, v_unpad, context_lengths, bsz, max_num_blocks_per_seq, block_size, dtype, device
)
block_tables = block_tables.to(device=device)

quantiles = [0.5, 0.2, 0.8]
if provider == "torch":
q_padded = PagedAttention.pad_and_reshape(q_unpad, context_lengths, max_seq_len, num_attn_heads, HEAD_DIM)
k_padded = PagedAttention.pad_and_reshape(k_unpad, context_lengths, max_seq_len, num_kv_heads, HEAD_DIM)
v_padded = PagedAttention.pad_and_reshape(v_unpad, context_lengths, max_seq_len, num_kv_heads, HEAD_DIM)
q_padded, k_padded, v_padded = (
q_padded.to(device=device),
k_padded.to(device=device),
v_padded.to(device=device),
)
q_padded = q_padded.transpose(1, 2)
k_padded = PagedAttention.repeat_kv(k_padded.transpose(1, 2), kv_group_num)
v_padded = PagedAttention.repeat_kv(v_padded.transpose(1, 2), kv_group_num)
# This benchmark ignores the padding mask. *Only* use the-same-length inputs for benchmarkings
attn_mask = AttentionMaskConverter._make_causal_mask(
(bsz, max_seq_len), q_padded.dtype, q_padded.device, past_key_values_length=0
)
attn_mask = attn_mask.to(device=q_padded.device)
fn = lambda: torch_attn_ref(
q_padded,
k_padded,
v_padded,
attn_mask,
bsz,
max_seq_len,
max_seq_len,
num_attn_heads,
num_kv_heads,
HEAD_DIM,
)
ms, min_ms, max_ms = triton.testing.do_bench(fn, warmup=WARM_UPS, rep=REPS, quantiles=quantiles)
if provider == "triton":
k_cache_triton = torch.zeros_like(k_cache_ref)
v_cache_triton = torch.zeros_like(v_cache_ref)
fn = lambda: context_attention_unpadded(
q_unpad, k_unpad, v_unpad, k_cache_triton, v_cache_triton, context_lengths, block_tables, block_size
)
ms, min_ms, max_ms = triton.testing.do_bench(fn, warmup=WARM_UPS, rep=REPS, quantiles=quantiles)

return ms, min_ms, max_ms


if __name__ == "__main__":
test_context_attention(4, 32, 8, 16, 1, True)
# bench_kernel.run(save_path=".", print_data=True)
89 changes: 0 additions & 89 deletions tests/test_infer/test_ops/triton/test_decoding_attn.py
Original file line number Diff line number Diff line change
Expand Up @@ -128,94 +128,5 @@ def test_flash_decoding(
assert torch.allclose(out_torch, out_triton, atol=1e-3, rtol=1e-4)


BATCH = 16
BLOCK_SIZE = 32
SAME_LEN = True
WARM_UPS = 10
REPS = 100
configs = [
triton.testing.Benchmark(
x_names=["KV_LEN"],
x_vals=[2**i for i in range(8, 14)],
# x_vals=[x for x in range(256, 8192, 256)],
line_arg="provider",
line_vals=["torch", "triton"],
line_names=["Torch", "Triton"],
styles=[("red", "-"), ("blue", "-")],
ylabel="ms",
plot_name=f"decoding-block_size-{BLOCK_SIZE}-batch{BATCH}",
args={"bsz": BATCH, "block_size": BLOCK_SIZE, "same_context_len": SAME_LEN, "kv_group_num": 1},
)
]


@triton.testing.perf_report(configs)
def bench_kernel(
bsz,
KV_LEN,
provider,
block_size: int,
kv_group_num: int,
same_context_len: bool,
):
num_attn_heads = 16
max_num_blocks_per_seq = triton.cdiv(KV_LEN, block_size)
max_seq_len = block_size * max_num_blocks_per_seq

num_kv_heads = num_attn_heads // kv_group_num
assert isinstance(num_kv_heads, int) and num_kv_heads > 0, "Invalid number of kv heads."
block_size * max_num_blocks_per_seq
dtype = torch.float16
device = get_current_device()

q, k_unpad, v_unpad, kv_lengths = prepare_data(
bsz, num_attn_heads, num_kv_heads, HEAD_DIM, same_context_len, Q_LEN, max_seq_len, dtype, device
)
max_seq_len_in_b = kv_lengths.max().item() # for random lengths

quantiles = [0.5, 0.2, 0.8]
if provider == "torch":
k_torch = convert_kv_unpad_to_padded(k_unpad, kv_lengths, bsz, max_seq_len_in_b)
v_torch = convert_kv_unpad_to_padded(v_unpad, kv_lengths, bsz, max_seq_len_in_b)
torch_padding_mask = prepare_padding_mask(kv_lengths, bsz, max_seq_len_in_b, q.device)
fn = lambda: torch_attn_ref(
q, k_torch, v_torch, torch_padding_mask, bsz, 1, max_seq_len_in_b, num_attn_heads, num_kv_heads, HEAD_DIM
)
ms, min_ms, max_ms = triton.testing.do_bench(fn, warmup=WARM_UPS, rep=REPS, quantiles=quantiles)
if provider == "triton":
k_cache, v_cache, block_tables = generate_caches_and_block_tables_v2(
k_unpad, v_unpad, kv_lengths, bsz, max_num_blocks_per_seq, block_size, dtype, device
)
block_tables = block_tables.to(device=device)
# the maximum block length splitted on kv should be the kv cache block size
kv_max_split_num = (max_seq_len_in_b + block_size - 1) // block_size
output = torch.empty((bsz, num_attn_heads, HEAD_DIM), dtype=dtype, device=device)
mid_output = torch.empty(
size=(bsz, num_attn_heads, kv_max_split_num, HEAD_DIM), dtype=torch.float32, device=q.device
)
mid_output_lse = torch.empty(size=(bsz, num_attn_heads, kv_max_split_num), dtype=torch.float32, device=q.device)
sm_scale = 1.0 / (HEAD_DIM**0.5)
fn = lambda: flash_decoding_attention(
# Here we use q.squeeze(2) because we hide the q_len dimension (which is equivalent to 1),
# refer to attention forward in modeling.
q.squeeze(2),
k_cache,
v_cache,
kv_lengths,
block_tables,
block_size,
max_seq_len_in_b,
output,
mid_output,
mid_output_lse,
sm_scale=sm_scale,
kv_group_num=kv_group_num,
) # [bsz, 1, num_heads, head_dim]
ms, min_ms, max_ms = triton.testing.do_bench(fn, warmup=WARM_UPS, rep=REPS, quantiles=quantiles)

return ms, min_ms, max_ms


if __name__ == "__main__":
test_flash_decoding(16, 32, 32, 16, 1, True)
# bench_kernel.run(save_path=".", print_data=True)
60 changes: 0 additions & 60 deletions tests/test_infer/test_ops/triton/test_fused_rotary_embedding.py
Original file line number Diff line number Diff line change
@@ -1,69 +1,11 @@
from copy import deepcopy

import torch
import triton

from colossalai.kernel.triton.fused_rotary_embedding import fused_rotary_embedding
from colossalai.kernel.triton.no_pad_rotary_embedding import rotary_embedding
from colossalai.kernel.triton.rotary_cache_copy import get_xine_cache

BATCH = 16
configs = [
triton.testing.Benchmark(
x_names=["num_tokens"],
x_vals=[2**i for i in range(4, 12)],
line_arg="provider",
line_vals=["torch_rotary_emb_func", "triton_rotary_emb_func"],
line_names=["torch_rotary_emb_func", "triton_rotary_emb_func"],
styles=[("red", "-"), ("blue", "-")],
ylabel="ms",
plot_name=f"rotary_emb-batch-{BATCH}",
args={"num_kv_heads": 16},
)
]


def torch_rotary_emb(x, cos, sin):
seq_len, h, dim = x.shape
x0 = x[:, :, 0 : dim // 2]
x1 = x[:, :, dim // 2 : dim]
cos = cos.view((seq_len, 1, dim // 2))
sin = sin.view((seq_len, 1, dim // 2))
o0 = x0 * cos - x1 * sin
o1 = x0 * sin + x1 * cos
return torch.cat((o0, o1), dim=-1)


@triton.testing.perf_report(configs)
def benchmark_rotary_emb(
provider: str,
num_tokens: int,
num_kv_heads: int,
):
warmup = 10
rep = 100

head_dim = 128
dtype = torch.float16
q_shape = (num_tokens, num_kv_heads, head_dim)
q = -2.3 + 0.5 * torch.randn(q_shape, dtype=dtype, device="cuda")
k_shape = (num_tokens, num_kv_heads, head_dim)
k = -2.3 + 0.5 * torch.randn(k_shape, dtype=dtype, device="cuda")
cos_shape = (4096, head_dim // 2)
cos = -1.2 + 0.5 * torch.randn(cos_shape, dtype=dtype, device="cuda")
sin = -2.0 + 0.5 * torch.randn(cos_shape, dtype=dtype, device="cuda")

if provider == "torch_rotary_emb_func":
fn = lambda: torch_rotary_emb(q, cos[:num_tokens], sin[:num_tokens])
elif provider == "triton_rotary_emb_func":
fn = lambda: fused_rotary_embedding(q, k, cos, sin, lengths)
else:
raise ValueError("Undefined provider")

ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep)
return ms


if __name__ == "__main__":
num_tokens = 20
num_kv_heads = 32
Expand All @@ -89,5 +31,3 @@ def benchmark_rotary_emb(
fused_rotary_embedding(q_copy, k_copy, cos_cache, sin_cache, lengths)
torch.allclose(q, q_copy)
torch.allclose(k, k_copy)

# benchmark_rotary_emb.run(save_path=".",print_data=True)
Loading

0 comments on commit 3bbcdce

Please sign in to comment.