Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add network traffic example #415

Merged
merged 2 commits into from
Jul 25, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions examples/datasets.yml
Original file line number Diff line number Diff line change
Expand Up @@ -105,3 +105,9 @@ data:
title: 'Solar Radiation NREL - NSRDB Meta'
files:
- NSRDB_StationsMeta.csv

- url: http://s3.amazonaws.com/datashader-data/maccdc2012_graph.zip
title: 'National CyberWatch Mid-Atlantic Collegiate Cyber Defense Competition'
files:
- maccdc2012_nodes.parq
- maccdc2012_edges.parq
259 changes: 259 additions & 0 deletions examples/packet_capture_graph.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,259 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Graphing network packets"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Preparing data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The data source comes from a publicly available network forensics repository: http://www.netresec.com/?page=PcapFiles. The selected file is https://download.netresec.com/pcap/maccdc-2012/maccdc2012_00000.pcap.gz. We will select only TCP traffic.\n",
"\n",
"```\n",
"tcpdump -qns 0 -r maccdc2012_00000.pcap | grep tcp > maccdc2012_00000.txt\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For example, here is a snapshot of the resulting output:"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"```\n",
"09:30:07.780000 IP 192.168.202.68.8080 > 192.168.24.100.1038: tcp 1380\n",
"09:30:07.780000 IP 192.168.24.100.1038 > 192.168.202.68.8080: tcp 0\n",
"09:30:07.780000 IP 192.168.202.68.8080 > 192.168.24.100.1038: tcp 1380\n",
"09:30:07.780000 IP 192.168.202.68.8080 > 192.168.24.100.1038: tcp 1380\n",
"09:30:07.780000 IP 192.168.27.100.37877 > 192.168.204.45.41936: tcp 0\n",
"09:30:07.780000 IP 192.168.24.100.1038 > 192.168.202.68.8080: tcp 0\n",
"09:30:07.780000 IP 192.168.202.68.8080 > 192.168.24.100.1038: tcp 1380\n",
"09:30:07.780000 IP 192.168.202.68.8080 > 192.168.24.100.1038: tcp 1380\n",
"09:30:07.780000 IP 192.168.202.68.8080 > 192.168.24.100.1038: tcp 1380\n",
"09:30:07.780000 IP 192.168.202.68.8080 > 192.168.24.100.1038: tcp 1380\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Given the directional nature of network traffic and the numerous ports per node, we will simplify the graph by treating traffic between nodes as undirected and ignorning the distinction between ports. The graph edges will have weights represented by the total number of bytes across both nodes in either direction."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"```\n",
"python pcap_to_parquet.py maccdc2012_00000.txt\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The resulting output will be two Parquet dataframes, `maccdc2012_nodes.parq` and `maccdc2012_edges.parq`."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Loading data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import datashader as ds\n",
"import datashader.transfer_functions as tf\n",
"\n",
"from colorcet import fire\n",
"from datashader.bundling import hammer_bundle\n",
"from datashader.layout import circular_layout\n",
"\n",
"from dask.distributed import Client\n",
"from fastparquet import ParquetFile\n",
"\n",
"client = Client()\n",
"width, height = 2000, 2000\n",
"x_range = (-0.01, 1.01)\n",
"y_range = (-0.01, 1.01)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"nodes_df = ParquetFile('maccdc2012_nodes.parq').to_pandas()\n",
"len(nodes_df)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"edges_df = ParquetFile('maccdc2012_edges.parq').to_pandas()\n",
"len(edges_df)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Edge bundling"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"positioned_df = circular_layout(nodes_df, edges_df)\n",
"positioned_df = positioned_df.set_index('id')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"bundled_df = hammer_bundle(positioned_df, edges_df)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"cvs = ds.Canvas(width, height, x_range, y_range)\n",
"img = tf.shade(cvs.points(bundled_df, 'x', 'y'), cmap=fire)\n",
"bundled_img = tf.set_background(img, color='black')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"bundled_img"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Showing nodes with active traffic"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"active_edges_df = edges_df[edges_df['weight'] > 0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"active_nodes = active_edges_df.source.append(active_edges_df.target, ignore_index=True).unique()\n",
"active_nodes_df = pd.DataFrame(active_nodes, columns=['id'])\n",
"active_nodes_df = active_nodes_df.set_index('id')\n",
"active_nodes_df = active_nodes_df.join(positioned_df)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cvs = ds.Canvas(width, height, x_range, y_range)\n",
"agg = cvs.points(active_nodes_df, 'x', 'y')\n",
"nodes_img = tf.spread(tf.shade(agg, cmap='red'), px=5)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"bundled_img + nodes_img"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.1"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
77 changes: 77 additions & 0 deletions examples/pcap_to_parquet.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
#!/usr/bin/env python

"""
Convert PCAP output to undirected graph and save in Parquet format.
"""

from __future__ import print_function

import re
import socket
import struct
import sys

import fastparquet as fp
import numpy as np
import pandas as pd


def ip_to_integer(s):
return struct.unpack("!I", socket.inet_aton(s))[0]


def to_parquet(filename, prefix="maccdc2012"):
with open(filename) as f:
traffic = {}
nodes = set()

for line in f.readlines():
fields = line.split()
if not fields:
continue
try:
addresses = []

# Extract source IP address and convert to integer
m = re.match(r'\d+\.\d+\.\d+\.\d+', fields[2])
if not m:
continue
addresses.append(ip_to_integer(m.group(0)))

# Extract target IP address and convert to integer
m = re.match(r'\d+\.\d+\.\d+\.\d+', fields[4])
if not m:
continue
addresses.append(ip_to_integer(m.group(0)))

nodes = nodes.union(addresses)
key = tuple(sorted(addresses))

# Extract packet size
nbytes = int(fields[-1])

if key in traffic:
traffic[key] += nbytes
else:
traffic[key] = nbytes
except:
pass

# Anonymize IP addresses by subtracting minimum from all integers
min_node_id = min(nodes)
edges = []
for key in traffic:
edge = [key[0] - min_node_id, key[1] - min_node_id, traffic[key]]
edges.append(edge)

nodes_df = pd.DataFrame(np.array(list(nodes)) - min_node_id, columns=['id'])
edges_df = pd.DataFrame(np.array(edges), columns=['source', 'target', 'weight'])

fp.write('{}_nodes.parq'.format(prefix), nodes_df)
fp.write('{}_edges.parq'.format(prefix), edges_df)

if __name__ == '__main__':
if len(sys.argv) >= 2:
to_parquet(sys.argv[1], prefix=sys.argv[2])
else:
to_parquet(sys.argv[1])