Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Separate out 3d and 4d combine functions #1243

Merged
merged 1 commit into from
Jul 4, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
34 changes: 17 additions & 17 deletions datashader/reductions.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,9 +29,9 @@
cudf = cp = None

from .utils import (
Expr, ngjit, nansum_missing, nanmax_in_place, nansum_in_place,
nanmax_n_in_place, nanmin_n_in_place, row_min_in_place,
row_max_n_in_place, row_min_n_in_place,
Expr, ngjit, nansum_missing, nanmax_in_place, nansum_in_place, row_min_in_place,
nanmax_n_in_place_4d, nanmax_n_in_place_3d, nanmin_n_in_place_4d, nanmin_n_in_place_3d,
row_max_n_in_place_4d, row_max_n_in_place_3d, row_min_n_in_place_4d, row_min_n_in_place_3d,
)


Expand Down Expand Up @@ -1521,11 +1521,11 @@ def _build_combine(self, dshape, antialias, cuda, partitioned):
@staticmethod
def _combine(aggs):
ret = aggs[0]
if ret.ndim == 3: # ndim is either 3 (ny, nx, n) or 4 (ny, nx, ncat, n)
# 4d view of each agg
aggs = [np.expand_dims(agg, 2) for agg in aggs]
for i in range(1, len(aggs)):
nanmax_n_in_place(aggs[0], aggs[i])
if ret.ndim == 3: # ndim is either 3 (ny, nx, n) or 4 (ny, nx, ncat, n)
nanmax_n_in_place_3d(aggs[0], aggs[i])
else:
nanmax_n_in_place_4d(aggs[0], aggs[i])
return ret

@staticmethod
Expand Down Expand Up @@ -1593,11 +1593,11 @@ def _build_combine(self, dshape, antialias, cuda, partitioned):
@staticmethod
def _combine(aggs):
ret = aggs[0]
if ret.ndim == 3: # ndim is either 3 (ny, nx, n) or 4 (ny, nx, ncat, n)
# 4d view of each agg
aggs = [np.expand_dims(agg, 2) for agg in aggs]
for i in range(1, len(aggs)):
nanmin_n_in_place(aggs[0], aggs[i])
if ret.ndim == 3: # ndim is either 3 (ny, nx, n) or 4 (ny, nx, ncat, n)
nanmin_n_in_place_3d(aggs[0], aggs[i])
else:
nanmin_n_in_place_4d(aggs[0], aggs[i])
return ret

@staticmethod
Expand Down Expand Up @@ -2213,9 +2213,9 @@ def _combine(aggs):
ret = aggs[0]
if len(aggs) > 1:
if ret.ndim == 3: # ndim is either 3 (ny, nx, n) or 4 (ny, nx, ncat, n)
# 4d view of each agg
aggs = [np.expand_dims(agg, 2) for agg in aggs]
row_max_n_in_place(aggs[0], aggs[1])
row_max_n_in_place_3d(aggs[0], aggs[1])
else:
row_max_n_in_place_4d(aggs[0], aggs[1])
return ret

@staticmethod
Expand Down Expand Up @@ -2278,9 +2278,9 @@ def _combine(aggs):
ret = aggs[0]
if len(aggs) > 1:
if ret.ndim == 3: # ndim is either 3 (ny, nx, n) or 4 (ny, nx, ncat, n)
# 4d view of each agg
aggs = [np.expand_dims(agg, 2) for agg in aggs]
row_min_n_in_place(aggs[0], aggs[1])
row_min_n_in_place_3d(aggs[0], aggs[1])
else:
row_min_n_in_place_4d(aggs[0], aggs[1])
return ret

@staticmethod
Expand Down
236 changes: 152 additions & 84 deletions datashader/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -648,72 +648,108 @@ def nanmin_in_place(ret, other):
ret[i] = other[i]


@ngjit
def _nanmax_n_impl(ret_pixel, other_pixel):
"""Single pixel implementation of nanmax_n_in_place.
ret_pixel and other_pixel are both 1D arrays of the same length.

Walk along other_pixel a value at a time, find insertion index in
ret_pixel and shift values along to insert. Next other_pixel value is
inserted at a higher index, so this walks the two pixel arrays just once
each.
"""
n = len(ret_pixel)
istart = 0
for other_value in other_pixel:
if isnull(other_value):
break
else:
for i in range(istart, n):
if isnull(ret_pixel[i]) or other_value > ret_pixel[i]:
# Shift values along then insert.
for j in range(n-1, i, -1):
ret_pixel[j] = ret_pixel[j-1]
ret_pixel[i] = other_value
istart = i+1
break


@ngjit_parallel
def nanmax_n_in_place(ret, other):
def nanmax_n_in_place_4d(ret, other):
"""Combine two max-n arrays, taking nans into account. Max-n arrays are 4D
with shape (ny, nx, ncat, n) where ny and nx are the number of pixels,
ncat the number of categories (will be 1 if not using a categorical
reduction) and the last axis containing n values in descending order.
If there are fewer than n values it is padded with nans.
Return the first array.
"""
ny, nx, ncat, n = ret.shape
ny, nx, ncat, _n = ret.shape
for y in nb.prange(ny):
for x in range(nx):
for cat in range(ncat):
ret_pixel = ret[y, x, cat] # 1D array of n values for single pixel
other_pixel = other[y, x, cat] # ditto
# Walk along other_pixel array a value at a time, find insertion
# index in ret_pixel and bump values along to insert. Next
# other_pixel value is inserted at a higher index, so this walks
# the two pixel arrays just once each.
istart = 0
for other_value in other_pixel:
if isnull(other_value):
break
else:
for i in range(istart, n):
if isnull(ret_pixel[i]) or other_value > ret_pixel[i]:
# Bump values along then insert.
for j in range(n-1, i, -1):
ret_pixel[j] = ret_pixel[j-1]
ret_pixel[i] = other_value
istart = i+1
break
_nanmax_n_impl(ret[y, x, cat], other[y, x, cat])


@ngjit_parallel
def nanmin_n_in_place(ret, other):
def nanmax_n_in_place_3d(ret, other):
"""3d version of nanmax_n_in_place_4d, taking arrays of shape (ny, nx, n).
"""
ny, nx, _n = ret.shape
for y in nb.prange(ny):
for x in range(nx):
_nanmax_n_impl(ret[y, x], other[y, x])


@ngjit
def _nanmin_n_impl(ret_pixel, other_pixel):
"""Single pixel implementation of nanmin_n_in_place.
ret_pixel and other_pixel are both 1D arrays of the same length.

Walk along other_pixel a value at a time, find insertion index in
ret_pixel and shift values along to insert. Next other_pixel value is
inserted at a higher index, so this walks the two pixel arrays just once
each.
"""
n = len(ret_pixel)
istart = 0
for other_value in other_pixel:
if isnull(other_value):
break
else:
for i in range(istart, n):
if isnull(ret_pixel[i]) or other_value < ret_pixel[i]:
# Shift values along then insert.
for j in range(n-1, i, -1):
ret_pixel[j] = ret_pixel[j-1]
ret_pixel[i] = other_value
istart = i+1
break


@ngjit_parallel
def nanmin_n_in_place_4d(ret, other):
"""Combine two min-n arrays, taking nans into account. Min-n arrays are 4D
with shape (ny, nx, ncat, n) where ny and nx are the number of pixels,
ncat the number of categories (will be 1 if not using a categorical
reduction) and the last axis containing n values in ascending order.
If there are fewer than n values it is padded with nans.
Return the first array.
"""
ny, nx, ncat, n = ret.shape
ny, nx, ncat, _n = ret.shape
for y in nb.prange(ny):
for x in range(nx):
for cat in range(ncat):
ret_pixel = ret[y, x, cat] # 1D array of n values for single pixel
other_pixel = other[y, x, cat] # ditto
# Walk along other_pixel array a value at a time, find insertion
# index in ret_pixel and bump values along to insert. Next
# other_pixel value is inserted at a higher index, so this walks
# the two pixel arrays just once each.
istart = 0
for other_value in other_pixel:
if isnull(other_value):
break
else:
for i in range(istart, n):
if isnull(ret_pixel[i]) or other_value < ret_pixel[i]:
# Bump values along then insert.
for j in range(n-1, i, -1):
ret_pixel[j] = ret_pixel[j-1]
ret_pixel[i] = other_value
istart = i+1
break
_nanmin_n_impl(ret[y, x, cat], other[y, x, cat])


@ngjit_parallel
def nanmin_n_in_place_3d(ret, other):
"""3d version of nanmin_n_in_place_4d, taking arrays of shape (ny, nx, n).
"""
ny, nx, _n = ret.shape
for y in nb.prange(ny):
for x in range(nx):
_nanmin_n_impl(ret[y, x], other[y, x])


@ngjit_parallel
Expand Down Expand Up @@ -754,62 +790,94 @@ def row_min_in_place(ret, other):


@ngjit
def row_max_n_in_place(ret, other):
def _row_max_n_impl(ret_pixel, other_pixel):
"""Single pixel implementation of row_max_n_in_place.
ret_pixel and other_pixel are both 1D arrays of the same length.

Walk along other_pixel a value at a time, find insertion index in
ret_pixel and shift values along to insert. Next other_pixel value is
inserted at a higher index, so this walks the two pixel arrays just once
each.
"""
n = len(ret_pixel)
istart = 0
for other_value in other_pixel:
if other_value == -1:
break
else:
for i in range(istart, n):
if ret_pixel[i] == -1 or other_value > ret_pixel[i]:
# Shift values along then insert.
for j in range(n-1, i, -1):
ret_pixel[j] = ret_pixel[j-1]
ret_pixel[i] = other_value
istart = i+1
break


@ngjit
def row_max_n_in_place_4d(ret, other):
"""Combine two row_max_n signed integer arrays.
Equivalent to nanmax_n_in_place with -1 replacing NaN for missing data.
Return the first array.
"""
ny, nx, ncat, n = ret.shape
ny, nx, ncat, _n = ret.shape
for y in range(ny):
for x in range(nx):
for cat in range(ncat):
ret_pixel = ret[y, x, cat] # 1D array of n values for single pixel
other_pixel = other[y, x, cat] # ditto
# Walk along other_pixel array a value at a time, find insertion
# index in ret_pixel and bump values along to insert. Next
# other_pixel value is inserted at a higher index, so this walks
# the two pixel arrays just once each.
istart = 0
for other_value in other_pixel:
if other_value == -1:
break
else:
for i in range(istart, n):
if ret_pixel[i] == -1 or other_value > ret_pixel[i]:
# Bump values along then insert.
for j in range(n-1, i, -1):
ret_pixel[j] = ret_pixel[j-1]
ret_pixel[i] = other_value
istart = i+1
break
_row_max_n_impl(ret[y, x, cat], other[y, x, cat])


@ngjit
def row_max_n_in_place_3d(ret, other):
ny, nx, _n = ret.shape
for y in range(ny):
for x in range(nx):
_row_max_n_impl(ret[y, x], other[y, x])


@ngjit
def row_min_n_in_place(ret, other):
def _row_min_n_impl(ret_pixel, other_pixel):
"""Single pixel implementation of row_min_n_in_place.
ret_pixel and other_pixel are both 1D arrays of the same length.

Walk along other_pixel a value at a time, find insertion index in
ret_pixel and shift values along to insert. Next other_pixel value is
inserted at a higher index, so this walks the two pixel arrays just once
each.
"""
n = len(ret_pixel)
istart = 0
for other_value in other_pixel:
if other_value == -1:
break
else:
for i in range(istart, n):
if ret_pixel[i] == -1 or other_value < ret_pixel[i]:
# Shift values along then insert.
for j in range(n-1, i, -1):
ret_pixel[j] = ret_pixel[j-1]
ret_pixel[i] = other_value
istart = i+1
break


@ngjit
def row_min_n_in_place_4d(ret, other):
"""Combine two row_min_n signed integer arrays.
Equivalent to nanmin_n_in_place with -1 replacing NaN for missing data.
Return the first array.
"""
ny, nx, ncat, n = ret.shape
ny, nx, ncat, _n = ret.shape
for y in range(ny):
for x in range(nx):
for cat in range(ncat):
ret_pixel = ret[y, x, cat] # 1D array of n values for single pixel
other_pixel = other[y, x, cat] # ditto
# Walk along other_pixel array a value at a time, find insertion
# index in ret_pixel and bump values along to insert. Next
# other_pixel value is inserted at a higher index, so this walks
# the two pixel arrays just once each.
istart = 0
for other_value in other_pixel:
if other_value == -1:
break
else:
for i in range(istart, n):
if ret_pixel[i] == -1 or other_value < ret_pixel[i]:
# Bump values along then insert.
for j in range(n-1, i, -1):
ret_pixel[j] = ret_pixel[j-1]
ret_pixel[i] = other_value
istart = i+1
break
_row_min_n_impl(ret[y, x, cat], other[y, x, cat])


@ngjit
def row_min_n_in_place_3d(ret, other):
ny, nx, _n = ret.shape
for y in range(ny):
for x in range(nx):
_row_min_n_impl(ret[y, x], other[y, x])