Skip to content

hesselberthlab/sc-haircut

Repository files navigation

Heterogeneity of biochemical phenotypes and gene expression among single cells

We developed an approach to simultaneously measure biochemical activities and mRNA abundance in single cells. We’ve modified the existing 10x Genomics 3´-gene expression kit (v2) to measure DNA repair activities in single cells by including DNA repair substrates in single-cell mRNA sequencing experiment.

Measuring DNA repair activities in single cells

Following GEM generation and reverse transcription, we isolate the DNA repair fragments from the mRNA by size separation. We then prepare a single-cell repair library that captures DNA repair intermediates and products.

DNA repair library prepartion

Processing raw data

Following sequencing, the mRNA fastq files are processed using the 10x Genomics cellranger pipeline.

transcriptome="path/to/refdata-cellranger-GRC38-3.0.0"

 cellranger count \
     --id="sample_mrna" \
     --fastqs="path/to/fastqs/" \
     --sample="sample" \
     --localcores=16 \
     --localmem=35 \
     --transcriptome=$transcriptome

The DNA repair libraries are processed using custom snakemake pipeline available here. This pipeline produces a tsv with the following columns:

  • gene: concatenation of the substrate and the 5´ end alignment position
  • cell: cell barcode sequence
  • count: number of UMI counts for the gene and cell

This file contains all known 10x cell barcodes present in the fastq files. To make filtered matrices to use with sc-RNA seq R packages like Seurat, we used the following functions from our analysis package scrunchy.

#Convert UMI-tools output to matrix format
umitools_to_mtx(count_file = "path/to/count.tsv",
                output_path = "path/to/mtx/")
        
# Filter repair matrix for cell barcodes from cellranger 3.0.0 output
# barcodes.tsv file is present the output from cellranger
# outs/filtered_feature_bc_matrix/

filter_matrix(matrix_path = "path/to/mtx",
              barcodes_path = "path/to/cell/barcodes.tsv",
              output_path = "path/to/filtered_mtx")

The mRNA matrices from cellranger and the DNA repair matrices can be analyzed further using most multimodal sc-RNA-seq software.

Functional barnyard experiment

Barnyard plot

The Seurat object used in these plots was created here

load("../data/barnyard/barnyard.seurat.object.Rdata")

#Getting hairpin info from seurat object

df <- rownames_to_column(as.data.frame(t(as.matrix(GetAssayData(barnyard_seurat, assay = 'repair', slot = 'counts')))), "cell_id") %>%
        gather(hairpin_pos, count, -cell_id) %>%
        separate(hairpin_pos, into = c("hairpin", "position")) %>%
        mutate(position = as.double(position),
               count = as.double(count))

# Add repair positions based on average signal
repair_position = data_frame(hairpin = c('Uracil2', 'riboG2'),
                             repair_position = c(45, 44))

df %>% left_join(repair_position) %>%
        filter(position == repair_position) -> rt

# Get cutoffs to determine cell type by repair
# Cutoff is > 5% of the maximum signal for each substrate
rt %>% group_by(hairpin, position) %>%
        summarize(max_count = max(count)) %>%
        mutate(cut_off = round(max_count * .05)) -> cutoffs

# Define ribo cutoff and uracil cutoff
r = cutoffs$cut_off[1]
u = cutoffs$cut_off[2]

# Define cell types:
# UNGKO = >5% maximum singal on ribo substrate and < 5% of the max on uracil substrate
# RNASEH2CKO = >5% maximum singal on uracil substrate and < 5% of the max on ribo substrate
# Both = >5% maximum singal on ribo substrate and >5% of the max on uracil substrate
# Low signal = <5% maximum singal on ribo substrate and <5% of the max on uracil substrate

rt %>% select(-position, -repair_position) %>% 
        spread(hairpin, count) %>%
        mutate(color = if_else(riboG2 >= r & Uracil2 <+ u, 'UNGKO',
                               if_else(Uracil2 >= u & riboG2 <= r, 'RNASEH2KO',
                                       if_else(riboG2 >= r & Uracil2 >= u, 'Both',
                                               'Low signal')))) %>% 
        select(-riboG2, -Uracil2) -> color_df

df <- left_join(df, color_df) %>%
        left_join(repair_position)

# count number of cells in each category
df %>% filter(hairpin == "Uracil2", 
                          position == 1) %>%
        group_by(color) %>%
        summarise(total = n()) %>%
        ungroup() %>%
        rename('Cell Type' = color)-> table

# Make barnyard plot
df %>% filter(position == repair_position) %>%
        select(cell_id, hairpin, color, count) %>%
        spread(hairpin, count) %>% 
        ggplot(aes(x = Uracil2, y = riboG2, color = color)) + 
        geom_count(alpha = .7) +
        theme_cowplot() + 
        theme(legend.position= "top",
              legend.title = element_blank()) +
        scale_color_manual(values = c(colors[1], "#999999", colors[2:3])) + 
        xlab("Counts at uracil repair site") + 
        ylab("Counts at ribonucleotide repair site") + 
        annotate(geom = "table", x = 75, y = 40, label = list(table), 
                 vjust = .5, hjust = 0)

Bulk coverage

# Add celltype to seurat object
barnyard_seurat$cell_id_from_repair <- color_df$color 
barnyard_seurat$celltype <- barnyard_seurat$cell_id_from_repair

# Get average hairpin coverage by cell type above defined by repair
bulk_df = get_hairpin_coverage(barnyard_seurat) %>%
        mutate(count_1000 = count/1000)

# Make coverage plots
bulk_df %>% filter(hairpin == "Uracil2",
                   celltype %in% c("RNASEH2KO", "UNGKO"),
                   position > 33) %>%
        haircut_plot(., x= "position", y = "count_1000", col = "celltype",
                         xlim = c(34,61), point = T,
                         y_lab = "Total counts (10\u00B3)",
                         pal = colors[2:3]) + theme_cowplot() + 
        theme(legend.position= "top",
              legend.title = element_blank()) + 
        ggtitle("Uracil") -> p1


bulk_df %>% filter(hairpin == "riboG2",
                   celltype %in% c("RNASEH2KO", "UNGKO"),
                   position > 33) %>%
        haircut_plot(., x= "position", y = "count_1000", col = "celltype",
                         xlim = c(34,61), point = T,
                         y_lab = "Total counts (10\u00B3)",
                         pal = colors[2:3]) + theme_cowplot() + 
        theme(legend.position= "top",
              legend.title = element_blank()) + 
        ggtitle("Ribonucleotide") -> p2

plot_grid(p1, p2, nrow = 2)

mRNA expression vs DNA repair

# Plot mRNA and repair coverage on UMAP plot using seurat functions

FeaturePlot(object = barnyard_seurat, features = c("repair_Uracil2-45", "repair_riboG2-44",
                                                   "UNG", "RNASEH2C"), 
            reduction = 'umap', cols = loupe_palette, order = T)

Measuring DNA repair in PBMCs

Identifying cell types from expression data

The seurat object used below was created here.

# Load PBMC seurat object
load("../data/pbmc/seurat/pbmc1.seurat.Rdata")

# Filter out platelets from data
pbmc1 <- subset(pbmc1, subset = celltype != "Platelet")

# Plot UMAP colored by cell type
DimPlot(pbmc1, reduction = 'umap', group.by = 'celltype', cols = colors)

Measuring DNA repair in PBMC cell types

# Get hairpin coverage by cell type
df <- get_hairpin_coverage(pbmc1)

# add adduction position for plotting and filter out platelets
df %>% mutate(adduct_position1 = 44,
               adduct_position2 = -1) %>%
        filter(celltype != "Platelet") -> df

# Make coverage plots
df %>%
        filter(hairpin == 'Uracil',
               position > 34) %>%
        haircut_plot(., x = "position", y = "avg_count", point = TRUE,
                     xlim = c(35, 55), pal = colors, col = 'celltype', 
                     y_lab = "Average counts per cell") + 
        theme(legend.position = 'top') + 
        ggtitle("U:A repair")

df %>%
        filter(hairpin == 'GU',
               position > 34) %>%
        haircut_plot(., x = "position", y = "avg_count", point = TRUE,
                     xlim = c(35, 55), pal = colors, col = 'celltype', 
                     y_lab = "Average counts per cell") + 
        theme(legend.position = 'top') + 
        ggtitle("U:G repair")

df %>%
        filter(hairpin == 'riboG',
               position > 34) %>%
        haircut_plot(., x = "position", y = "avg_count", point = TRUE,
                     xlim = c(35, 55), pal = colors, col = 'celltype', 
                     y_lab = "Average counts per cell") + 
        theme(legend.position = 'top') + 
        ggtitle("Ribonucleotide repair")

df %>%
        filter(hairpin == 'Abasic',
               position > 34) %>%
        haircut_plot(., x = "position", y = "avg_count", point = TRUE,
                     xlim = c(35, 55), pal = colors, col = 'celltype', 
                     y_lab = "Average counts per cell") + 
        theme(legend.position = 'top') + 
        ggtitle("Abasic repair")

df %>%
        filter(hairpin == 'Normal',
               position > 34) %>%
        haircut_plot(., x = "position", y = "avg_count", point = TRUE,
                     xlim = c(35, 55), pal = colors, col = 'celltype', 
                     y_lab = "Average counts per cell") + 
        theme(legend.position = 'top') + 
        ggtitle("Unmodified substrate")

Single cell DNA repair in PBMCs

# Get dataframe of repair position activity values, cell ids, 
# and cell types from seurat object
repair.positions = c("Uracil-45", 
                     "riboG-44", 
                     "GU-45", 
                     "Abasic-46", 
                     "Abasic-45", 
                     "Normal-45")
df <- get_single_cell_df(pbmc1, feat = c(repair.positions, "celltype"))

#Make tidy data
df %>% gather(repair, activity, -celltype, -cell_id) -> df

#Add labels for plotting
repair_labels = tribble(~repair, ~label,
                        "Uracil_45", "U:A repair",
                        "GU_45", "U:G repair",
                        "riboG_44", "Ribonucelotide repair",
                        "Abasic_46", "Abasic repair long-patch",
                        "Abasic_45", "Abasic repair short-patch",
                        "Normal_45", "Unmodified substrate"
                        )

# Put samples in correct order
df %>% full_join(repair_labels) %>%        
        mutate(label = fct_relevel(label, "U:A repair", 
                                   "U:G repair", 
                                   "Ribonucelotide repair", 
                                   "Abasic repair long-patch",
                                   "Abasic repair short-patch",
                                   "Unmodified substrate")) -> df

# Plot activities 
df %>% filter(repair %in% c("Uracil_45", "GU_45", "riboG_44", "Normal_45")) %>%
        activity_plot() + 
        facet_wrap(~label, ncol = 1, strip.position = "left") 

df %>% filter(repair %in% c("Abasic_45", "Abasic_46")) %>%
        activity_plot(lab = label) 

Session info

  • Typical install time for all packages: ~30 minutes
  • Expected run time for full data fastq files -> expression matrices: ~6-24 hours
  • Expected run time for full data expression matrices -> plots: ~10 minutes
  • Demo expression matrices found in scrunchy R package.
  • No required non-standard hardware but platform LSF significantly reduces run time.

Software tested only on R version 3.5 using the following packages.

devtools::session_info()
## ─ Session info ──────────────────────────────────────────────────────────
##  setting  value                       
##  version  R version 3.5.1 (2018-07-02)
##  os       macOS High Sierra 10.13.6   
##  system   x86_64, darwin15.6.0        
##  ui       X11                         
##  language (EN)                        
##  collate  en_US.UTF-8                 
##  ctype    en_US.UTF-8                 
##  tz       America/Denver              
##  date     2019-11-12                  
## 
## ─ Packages ──────────────────────────────────────────────────────────────
##  package              * version    date       lib
##  ape                    5.3        2019-03-17 [1]
##  assertthat             0.2.1      2019-03-21 [1]
##  backports              1.1.4      2019-04-10 [1]
##  beeswarm               0.2.3      2016-04-25 [1]
##  bibtex                 0.4.2      2017-06-30 [1]
##  Biobase                2.42.0     2018-10-30 [1]
##  BiocGenerics           0.28.0     2018-10-30 [1]
##  BiocNeighbors          1.0.0      2018-10-30 [1]
##  BiocParallel           1.16.6     2019-02-17 [1]
##  bitops                 1.0-6      2013-08-17 [1]
##  broom                  0.5.2      2019-04-07 [1]
##  callr                  3.2.0      2019-03-15 [1]
##  caTools                1.17.1.2   2019-03-06 [1]
##  cellranger             1.1.0      2016-07-27 [1]
##  circlize               0.4.6      2019-04-03 [1]
##  cli                    1.1.0      2019-03-19 [1]
##  cluster                2.1.0      2019-06-19 [1]
##  codetools              0.2-16     2018-12-24 [1]
##  colorblindr          * 0.1.0      2019-05-09 [1]
##  colorspace           * 1.4-1      2019-03-18 [1]
##  ComplexHeatmap         1.20.0     2018-10-30 [1]
##  cowplot              * 0.9.99     2019-06-25 [1]
##  crayon                 1.3.4      2017-09-16 [1]
##  data.table             1.12.2     2019-04-07 [1]
##  DelayedArray           0.8.0      2018-10-30 [1]
##  DelayedMatrixStats     1.4.0      2018-10-30 [1]
##  desc                   1.2.0      2018-05-01 [1]
##  devtools               2.0.2      2019-04-08 [1]
##  digest                 0.6.20     2019-07-04 [1]
##  dplyr                * 0.8.3      2019-07-04 [1]
##  dynamicTreeCut         1.63-1     2016-03-11 [1]
##  edgeR                  3.24.3     2019-01-02 [1]
##  evaluate               0.14       2019-05-28 [1]
##  fitdistrplus           1.0-14     2019-01-23 [1]
##  forcats              * 0.4.0      2019-02-17 [1]
##  fs                     1.3.1      2019-05-06 [1]
##  future                 1.14.0     2019-07-02 [1]
##  future.apply           1.3.0      2019-06-18 [1]
##  gbRd                   0.4-11     2012-10-01 [1]
##  gdata                  2.18.0     2017-06-06 [1]
##  generics               0.0.2      2018-11-29 [1]
##  GenomeInfoDb           1.18.2     2019-02-12 [1]
##  GenomeInfoDbData       1.2.0      2018-12-19 [1]
##  GenomicRanges          1.34.0     2018-10-30 [1]
##  GetoptLong             0.1.7      2018-06-10 [1]
##  ggbeeswarm             0.6.0      2017-08-07 [1]
##  ggplot2              * 3.2.0      2019-06-16 [1]
##  ggpmisc              * 0.3.1      2019-04-02 [1]
##  ggrepel                0.8.1      2019-05-07 [1]
##  ggridges               0.5.1      2018-09-27 [1]
##  ggsignif               0.5.0      2019-02-20 [1]
##  GlobalOptions          0.1.0      2018-06-09 [1]
##  globals                0.12.4     2018-10-11 [1]
##  glue                   1.3.1      2019-03-12 [1]
##  gplots                 3.0.1.1    2019-01-27 [1]
##  gridExtra              2.3        2017-09-09 [1]
##  gtable                 0.3.0      2019-03-25 [1]
##  gtools                 3.8.1      2018-06-26 [1]
##  haven                  2.1.0      2019-02-19 [1]
##  HDF5Array              1.10.1     2018-12-05 [1]
##  hms                    0.4.2      2018-03-10 [1]
##  htmltools              0.3.6      2017-04-28 [1]
##  htmlwidgets            1.3        2018-09-30 [1]
##  httr                   1.4.0      2018-12-11 [1]
##  ica                    1.0-2      2018-05-24 [1]
##  igraph                 1.2.4.1    2019-04-22 [1]
##  IRanges                2.16.0     2018-10-30 [1]
##  irlba                  2.3.3      2019-02-05 [1]
##  jsonlite               1.6        2018-12-07 [1]
##  KernSmooth             2.23-15    2015-06-29 [1]
##  knitr                  1.23       2019-05-18 [1]
##  labeling               0.3        2014-08-23 [1]
##  lattice                0.20-38    2018-11-04 [1]
##  lazyeval               0.2.2      2019-03-15 [1]
##  limma                  3.38.3     2018-12-02 [1]
##  listenv                0.7.0      2018-01-21 [1]
##  lmtest                 0.9-37     2019-04-30 [1]
##  locfit                 1.5-9.1    2013-04-20 [1]
##  lsei                   1.2-0      2017-10-23 [1]
##  lubridate              1.7.4      2018-04-11 [1]
##  magrittr               1.5        2014-11-22 [1]
##  MASS                   7.3-51.4   2019-03-31 [1]
##  Matrix                 1.2-17     2019-03-22 [1]
##  matrixStats            0.54.0     2018-07-23 [1]
##  memoise                1.1.0      2017-04-21 [1]
##  metap                  1.1        2019-02-06 [1]
##  modelr                 0.1.4      2019-02-18 [1]
##  multcomp               1.4-10     2019-03-05 [1]
##  MultiAssayExperiment   1.8.3      2019-02-13 [1]
##  munsell                0.5.0      2018-06-12 [1]
##  mvtnorm                1.0-11     2019-06-19 [1]
##  nlme                   3.1-140    2019-05-12 [1]
##  npsurv                 0.4-0      2017-10-14 [1]
##  pbapply                1.4-0      2019-02-05 [1]
##  pillar                 1.4.2      2019-06-29 [1]
##  pkgbuild               1.0.3      2019-03-20 [1]
##  pkgconfig              2.0.2      2018-08-16 [1]
##  pkgload                1.0.2      2018-10-29 [1]
##  plotly                 4.9.0      2019-04-10 [1]
##  plyr                   1.8.4      2016-06-08 [1]
##  png                    0.1-7      2013-12-03 [1]
##  prettyunits            1.0.2      2015-07-13 [1]
##  processx               3.4.0      2019-07-03 [1]
##  ps                     1.3.0      2018-12-21 [1]
##  purrr                * 0.3.2      2019-03-15 [1]
##  qvalue                 2.14.1     2019-01-10 [1]
##  R.methodsS3            1.7.1      2016-02-16 [1]
##  R.oo                   1.22.0     2018-04-22 [1]
##  R.utils                2.9.0      2019-06-13 [1]
##  R6                     2.4.0      2019-02-14 [1]
##  RANN                   2.6.1      2019-01-08 [1]
##  RColorBrewer           1.1-2      2014-12-07 [1]
##  Rcpp                   1.0.2      2019-07-25 [1]
##  RCurl                  1.95-4.12  2019-03-04 [1]
##  Rdpack                 0.11-0     2019-04-14 [1]
##  readr                * 1.3.1      2018-12-21 [1]
##  readxl                 1.3.1      2019-03-13 [1]
##  remotes                2.1.0      2019-06-24 [1]
##  reshape2               1.4.3      2017-12-11 [1]
##  reticulate             1.12       2019-04-12 [1]
##  rhdf5                  2.26.2     2019-01-02 [1]
##  Rhdf5lib               1.4.3      2019-03-25 [1]
##  rjson                  0.2.20     2018-06-08 [1]
##  rlang                  0.4.0      2019-06-25 [1]
##  rmarkdown              1.13       2019-05-22 [1]
##  ROCR                   1.0-7      2015-03-26 [1]
##  rprojroot              1.3-2      2018-01-03 [1]
##  rstudioapi             0.10       2019-03-19 [1]
##  rsvd                   1.0.1      2019-06-02 [1]
##  Rtsne                  0.15       2018-11-10 [1]
##  rvest                  0.3.4      2019-05-15 [1]
##  S4Vectors              0.20.1     2018-11-09 [1]
##  sandwich               2.5-1      2019-04-06 [1]
##  scales                 1.0.0      2018-08-09 [1]
##  scater                 1.10.1     2019-01-04 [1]
##  scran                  1.10.2     2019-01-04 [1]
##  scrunchy             * 0.0.0.9000 2019-07-15 [1]
##  sctransform            0.2.0      2019-05-13 [1]
##  SDMTools               1.1-221.1  2019-04-18 [1]
##  sessioninfo            1.1.1      2018-11-05 [1]
##  Seurat               * 3.0.3.9004 2019-06-25 [1]
##  shape                  1.4.4      2018-02-07 [1]
##  SingleCellExperiment   1.4.1      2019-01-04 [1]
##  statmod                1.4.32     2019-05-29 [1]
##  stringi                1.4.3      2019-03-12 [1]
##  stringr              * 1.4.0      2019-02-10 [1]
##  SummarizedExperiment   1.12.0     2018-10-30 [1]
##  survival               2.44-1.1   2019-04-01 [1]
##  testthat               2.1.1      2019-04-23 [1]
##  TH.data                1.0-10     2019-01-21 [1]
##  tibble               * 2.1.3      2019-06-06 [1]
##  tidyr                * 0.8.3      2019-03-01 [1]
##  tidyselect             0.2.5      2018-10-11 [1]
##  tidyverse            * 1.2.1      2017-11-14 [1]
##  tsne                   0.1-3      2016-07-15 [1]
##  umap                   0.2.2.0    2019-05-13 [1]
##  usethis                1.5.0      2019-04-07 [1]
##  vipor                  0.4.5      2017-03-22 [1]
##  viridis                0.5.1      2018-03-29 [1]
##  viridisLite            0.3.0      2018-02-01 [1]
##  withr                  2.1.2      2018-03-15 [1]
##  xfun                   0.8        2019-06-25 [1]
##  xml2                   1.2.0      2018-01-24 [1]
##  XVector                0.22.0     2018-10-30 [1]
##  yaml                   2.2.0      2018-07-25 [1]
##  zlibbioc               1.28.0     2018-10-30 [1]
##  zoo                    1.8-6      2019-05-28 [1]
##  source                                  
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.1)                          
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.0)                          
##  Bioconductor                            
##  Bioconductor                            
##  Bioconductor                            
##  Bioconductor                            
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.2)                          
##  Github (clauswilke/colorblindr@1ac3d4d) 
##  CRAN (R 3.5.2)                          
##  Bioconductor                            
##  Github (wilkelab/cowplot@57feb8e)       
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.2)                          
##  Bioconductor                            
##  Bioconductor                            
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.0)                          
##  Bioconductor                            
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.1)                          
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.0)                          
##  Bioconductor                            
##  Bioconductor                            
##  Bioconductor                            
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.1)                          
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.2)                          
##  Bioconductor                            
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.2)                          
##  Bioconductor                            
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.1)                          
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.2)                          
##  Bioconductor                            
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.2)                          
##  Bioconductor                            
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.1)                          
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.1)                          
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.1)                          
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.2)                          
##  Bioconductor                            
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.2)                          
##  Bioconductor                            
##  Bioconductor                            
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.1)                          
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.2)                          
##  Bioconductor                            
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.0)                          
##  Bioconductor                            
##  Bioconductor                            
##  Github (hesselberthlab/scrunchy@b2f8cea)
##  Github (ChristophH/sctransform@8e48f49) 
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.0)                          
##  Github (satijalab/seurat@9a9f439)       
##  CRAN (R 3.5.0)                          
##  Bioconductor                            
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.2)                          
##  Bioconductor                            
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.1)                          
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.0)                          
##  CRAN (R 3.5.2)                          
##  CRAN (R 3.5.0)                          
##  Bioconductor                            
##  CRAN (R 3.5.0)                          
##  Bioconductor                            
##  CRAN (R 3.5.2)                          
## 
## [1] /Library/Frameworks/R.framework/Versions/3.5/Resources/library

Additional software dependencies:

  • Python v3
  • Snakemake
  • cellranger v3.0.2
  • bedtools v2.26
  • samtools v1.9
  • bowtie2 v 2.3.2
  • umi_tools from CGAT
  • cutadapt v1.16