‘ir’ is an R package to import, handle and preprocess infrared spectra. Infrared spectra are stored as list columns in data frames which enables efficient storage of metadata along with the spectra and using ‘tidyverse’ functions for data operations.
Spectra in the following formats can be imported:
csv
files with individual spectra.- Thermo Galactic’s
spc
files with individual spectra.
Functions for spectral preprocessing and data handling:
- baseline correction with:
- a polynomial baseline
- a convex hull baseline
- a Savitzky-Golay baseline (Lasch 2012)
- binning
- clipping
- interpolating (resampling, linearly)
- replacing selected parts of a spectrum by a straight line
- averaging spectra within specified groups
- normalizing spectra:
- to the maximum intensity
- to the intensity at a specific x value
- so that all intensity values sum to 1
- vector normalization
- Standard Normal Variate correction
- smoothing:
- Savitzky-Golay smoothing
- Fourier smoothing
- computing derivatives of spectra using Savitzky-Golay smoothing
- spectral arithmetic (addition, subtraction, multiplication, division)
- computing the variance of intensity values (optionally after subtracting reference spectra)
- computing maxima, minima, median, and ranges of intensity values of spectra
- Atmospheric background correction (Perez-Guaita et al. 2013)
- Scaling intensity values in spectra
- Wrapper to sampling algorithms implemented in the ‘prospectr’ package.
- plotting
- tidyverse methods
You can install ‘ir’ from CRAN:
install.packages("ir")
You can install the development version of ‘ir’ from GitHub:
remotes::install_github(repo = "henningte/ir", ref = "dev")
Load ‘ir’:
# load ir package
library(ir)
# load additional packages needed for this tutorial
library(ggplot2)
For brief introductions, see below and the two vignettes:
Here is an example preprocessing pipeline for the sample data in the
package (ir_sample_data
) which does baseline correction, binning (bin
width of 10), normalization (so that the maximum intensity value is 1
and the minimum intensity value is 0), and finally plots the
preprocessed spectra for each sample and sample type:
ir_sample_data |> # data
ir::ir_bc(method = "rubberband") |> # baseline correction
ir::ir_bin(width = 10) |> # binning
ir::ir_normalize(method = "zeroone") |> # normalization
plot() + ggplot2::facet_wrap(~ sample_type) # plot
You can load the sample data with:
ir::ir_sample_data
#> # A tibble: 58 × 7
#> id_measurement id_sample sample_type sample_comment klason_lignin
#> <int> <chr> <chr> <chr> <units>
#> 1 1 GN 11-389 needles Abies Firma Momi fir 0.359944
#> 2 2 GN 11-400 needles Cupressocyparis leylandii… 0.339405
#> 3 3 GN 11-407 needles Juniperus chinensis Chine… 0.267552
#> 4 4 GN 11-411 needles Metasequoia glyptostroboi… 0.350016
#> 5 5 GN 11-416 needles Pinus strobus Torulosa 0.331100
#> 6 6 GN 11-419 needles Pseudolarix amabili Golde… 0.279360
#> 7 7 GN 11-422 needles Sequoia sempervirens Cali… 0.329672
#> 8 8 GN 11-423 needles Taxodium distichum Cascad… 0.356950
#> 9 9 GN 11-428 needles Thuja occidentalis Easter… 0.369360
#> 10 10 GN 11-434 needles Tsuga caroliniana Carolin… 0.289050
#> # ℹ 48 more rows
#> # ℹ 2 more variables: holocellulose <units>, spectra <named list>
ir_sample_data
is an object of class ir
. An Object of class ir
is
a data frame where each row represents one infrared measurement and
column spectra
contains the infrared spectra (one per row) as list
column. This allows to store metadata along each spectrum (for example
the N content for each sample) and to manipulate ir
objects with
‘tidyverse’ functions.
The column spectra
is a list column of data frames, meaning that each
cell of spectra
contains a data frame which contains the data for one
spectrum. For example, here are the first rows of the first spectrum in
ir_smaple_data
:
# View the first ten rows of the first spectrum in ir_sample_data
head(ir_sample_data$spectra[[1]])
#> # A tibble: 6 × 2
#> x y
#> <int> <dbl>
#> 1 4000 0.000361
#> 2 3999 0.000431
#> 3 3998 0.000501
#> 4 3997 0.000571
#> 5 3996 0.000667
#> 6 3995 0.000704
Column x
contains values for the spectral channel (in this case
wavenumbers [cm-1]) and column y
the corresponding
intensity values.
Please cite this R package as:
Henning Teickner (2025). ir: Functions to Handle and Preprocess Infrared Spectra. DOI: 10.5281/zenodo.5747169. Accessed 06 Apr 2025. Online at https://zenodo.org/record/5747169.
The irpeat package provides functions to analyze infrared spectra of peat (humification indices, prediction models) and uses the ‘ir’ package to handle spectral data.
Text and figures : CC BY 4.0
Code : See the DESCRIPTION file
Data : CC BY 4.0 attribution requested in reuse. See the sources section for data sources and how to give credit to the original author(s) and the source.
We welcome contributions from everyone. Before you get started, please see our contributor guidelines. Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms.
ir_sample_data
is derived from Hodgkins et al. (2018) and was
reformatted to match the requirements of ‘ir’. The original article
containing the data can be downloaded from
https://www.nature.com/articles/s41467-018-06050-2 and is distributed
under the Creative Commons Attribution 4.0 International License
(https://creativecommons.org/licenses/by/4.0/). The data on Klason
lignin and holocellulose content are originally from De la Cruz,
Osborne, and Barlaz (2016).
De la Cruz, Florentino B., Jason Osborne, and Morton A. Barlaz. 2016. “Determination of Sources of Organic Matter in Solid Waste by Analysis of Phenolic Copper Oxide Oxidation Products of Lignin.” Journal of Environmental Engineering 142 (2): 04015076. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001038.
Hodgkins, Suzanne B., Curtis J. Richardson, René Dommain, Hongjun Wang, Paul H. Glaser, Brittany Verbeke, B. Rose Winkler, et al. 2018. “Tropical Peatland Carbon Storage Linked to Global Latitudinal Trends in Peat Recalcitrance.” Nature Communications 9 (1): 3640. https://doi.org/10.1038/s41467-018-06050-2.
Lasch, Peter. 2012. “Spectral Pre-Processing for Biomedical Vibrational Spectroscopy and Microspectroscopic Imaging.” Chemometrics and Intelligent Laboratory Systems 117 (August): 100–114. https://doi.org/10.1016/j.chemolab.2012.03.011.
Perez-Guaita, David, Julia Kuligowski, Guillermo Quintás, Salvador Garrigues, and Miguel de la Guardia. 2013. “Atmospheric Compensation in Fourier Transform Infrared (FT-IR) Spectra of Clinical Samples.” Applied Spectroscopy 67 (11): 1339–42. https://doi.org/10.1366/13-07159.