Skip to content

discusses deep learning models for segmenting MRI images, specifically the UNET model for Brain Tumor Segmentation

Notifications You must be signed in to change notification settings

harshgarg28/Brain-Tumor-Segmentation

Repository files navigation

Brain_Tumor_Segmentation

This repository contains the model of spatital attension and the files for segmenting the brain tumor. this segmentataion involves preproccesing the data and trained using the nvidia-gpu this has been trained using batch of 2 and 100 epocs.

General Flow

IMPLEMENTATION DETAIL • The proposed model (dResU-Net with spatial attention) was implemented using Python programming language, Keras library, and TensorFlow as the backend. The proposed model was implemented using Python programming language, Keras library, and TensorFlow as the backend. • For the experimental purpose, an ADAM optimizer with a learning rate of 0.0001 was used. The activation function ReLU with batch normalization was employed. Batch normalization normally increases the stability of the model and normalizes the network at each layer. • The model was trained for 100 epochs on a batch size of 2 due to the limited computational resources. The experiments were conducted on the BraTS 2020 benchmark dataset, from which 75% of the data was used for training, and 25% data for validation. • The testing was done on 50% of the Brats 2021 benchmark dataset, it was tested for the batch size of 6.

About

discusses deep learning models for segmenting MRI images, specifically the UNET model for Brain Tumor Segmentation

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages