forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Support Fake GroupWise Quant (PaddlePaddle#61900)
- Loading branch information
Showing
4 changed files
with
221 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,113 @@ | ||
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import numpy as np | ||
|
||
import paddle | ||
|
||
from ..base_observer import BaseObserver | ||
from ..factory import ObserverFactory | ||
|
||
|
||
class GroupWiseWeightObserver(ObserverFactory): | ||
r""" | ||
It collects channel-wise maximum absolute values of target weights. | ||
Args: | ||
bit_length(int, optional): Number of bits to represent an quantized integer in binary. | ||
dtype(str, optional): The data type of input tensor. | ||
name (str, optional): This parameter is used by developers to print debugging information. \ | ||
For details, please refer to :ref:`api_guide_Name`. Default is None. | ||
Examples: | ||
.. code-block:: python | ||
from paddle.quantization import QuantConfig | ||
from paddle.quantization.quanters import AbsMaxChannelWiseWeightObserver | ||
quanter = AbsMaxChannelWiseWeightObserver() | ||
q_config = QuantConfig(activation=None, weight=quanter) | ||
""" | ||
|
||
def __init__(self, quant_bits=8, group_size=128): | ||
super().__init__(quant_bits=quant_bits) | ||
|
||
def _get_class(self): | ||
return GroupWiseWeightObserverLayer | ||
|
||
|
||
class GroupWiseWeightObserverLayer(BaseObserver): | ||
def __init__(self, layer, quant_bits=8, group_size=128): | ||
super().__init__() | ||
self.quant_bits = quant_bits | ||
self.group_size = group_size | ||
self._layer = layer | ||
self._max = None | ||
self._scale = None | ||
self._zero_point = None | ||
|
||
def forward(self, inputs): | ||
self._max = self._cal_abs_max(inputs) | ||
return inputs | ||
|
||
def _cal_abs_max(self, inputs): | ||
"""Use group_size to group the input, then use the | ||
absmax method to calculate the scale | ||
""" | ||
input_shape = inputs.shape | ||
assert ( | ||
self.group_size == 64 or self.group_size == 128 | ||
), "group_size only support 64 or 128" | ||
assert ( | ||
inputs.shape[0] % self.group_size == 0 | ||
), "group_size must be a factor of input channels" | ||
assert len(inputs.shape) == 2, "Currently only support 2D tensor" | ||
input_processed = inputs.transpose([1, 0]).reshape( | ||
[input_shape[1], input_shape[0] // self.group_size, self.group_size] | ||
) | ||
|
||
abs_max_values = paddle.max(paddle.abs(input_processed), axis=2).cast( | ||
"float32" | ||
) | ||
abs_max_values = paddle.where( | ||
abs_max_values == np.float32(0), np.float32(1e-8), abs_max_values | ||
) | ||
abs_max_values = abs_max_values.transpose([1, 0]) | ||
return abs_max_values | ||
|
||
def min_value(self) -> float: | ||
return 0.0 | ||
|
||
def max_value(self) -> float: | ||
return self._max | ||
|
||
def bit_length(self): | ||
return self._quant_bits | ||
|
||
def quant_axis(self): | ||
return -1 | ||
|
||
def cal_thresholds(self): | ||
"""Compute thresholds for MAX function.""" | ||
if self._scale is None: | ||
self._scale = self._max | ||
self._zero_point = paddle.zeros_like(self._scale) | ||
|
||
def scales(self): | ||
"""Return output scales.""" | ||
if self._scale is None: | ||
self.cal_thresholds() | ||
return self._scale | ||
|
||
def zero_points(self): | ||
"""Return output zero points.""" | ||
if self._zero_point is None: | ||
self.cal_thresholds() | ||
return self._zero_point |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,69 @@ | ||
# copyright (c) 2023 paddlepaddle authors. all rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import os | ||
import tempfile | ||
import unittest | ||
|
||
import paddle | ||
from paddle.nn import Linear, Sequential | ||
from paddle.quantization import PTQ, QuantConfig | ||
from paddle.quantization.observers import GroupWiseWeightObserver | ||
|
||
|
||
class LinearDygraph(paddle.nn.Layer): | ||
def __init__(self): | ||
super().__init__() | ||
self.fc = Sequential( | ||
Linear(128, 128), Linear(128, 128), Linear(128, 128) | ||
) | ||
|
||
def forward(self, inputs): | ||
out = self.fc(inputs) | ||
return out | ||
|
||
|
||
class TestPTQGroupWise(unittest.TestCase): | ||
def setUp(self): | ||
self.temp_dir = tempfile.TemporaryDirectory() | ||
self.path = os.path.join(self.temp_dir.name, 'ptq') | ||
|
||
def tearDown(self): | ||
self.temp_dir.cleanup() | ||
|
||
def _get_model_for_ptq(self): | ||
observer = GroupWiseWeightObserver(quant_bits=4, group_size=128) | ||
model = LinearDygraph() | ||
model.eval() | ||
q_config = QuantConfig(activation=None, weight=observer) | ||
ptq = PTQ(q_config) | ||
quant_model = ptq.quantize(model) | ||
return quant_model, ptq | ||
|
||
def _count_layers(self, model, layer_type): | ||
count = 0 | ||
for _layer in model.sublayers(True): | ||
if isinstance(_layer, layer_type): | ||
count += 1 | ||
return count | ||
|
||
def test_quantize(self): | ||
ptq_model, _ = self._get_model_for_ptq() | ||
inputs = paddle.rand([128, 128], dtype="float32") | ||
out = ptq_model(inputs) | ||
self.assertIsNotNone(out) | ||
|
||
|
||
if __name__ == '__main__': | ||
unittest.main() |