Skip to content

😔 😞 😣 😖 😩 Detect depression on social media using the ssToT method introduced in our ASONAM 2017 paper titled "Semi-Supervised Approach to Monitoring Clinical Depressive Symptoms in Social Media"

License

Notifications You must be signed in to change notification settings

halolimat/Social-media-Depression-Detector

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Knoesis Depression Project Logo

Social-media Depression Detector (SDD)

This tool allows you to detect depression on social media using the ssToT method introduced in our ASONAM 2017 paper titled Semi-Supervised Approach to Monitoring Clinical Depressive Symptoms in Social Media

HOW TO USE

Follow the steps in the Jupyter Notebook

Licenses

This work is licensed under GPL-3.0 and CreativesForGood licenses. A copy of the first license can be found in this repository. The other license can be found over this link C4G License.

GPLv3 Logo CreativesForGood Logo

Citing

If you do make use of SDD, the depression lexicon, or any of its components please cite the following publication:

Amir Hossein Yazdavar, Hussein S. Al-Olimat, Monireh Ebrahimi, Goonmeet Bajaj, Tanvi Banerjee, Krishnaprasad Thirunarayan, Jyotishman Pathak, and Amit Sheth. 2017. Semi-Supervised Approach to Monitoring Clinical Depressive Symptoms in Social Media. In Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017 (ASONAM '17), Jana Diesner, Elena Ferrari, and Guandong Xu (Eds.). ACM, New York, NY, USA, 1191-1198. DOI: https://doi.org/10.1145/3110025.3123028

About

😔 😞 😣 😖 😩 Detect depression on social media using the ssToT method introduced in our ASONAM 2017 paper titled "Semi-Supervised Approach to Monitoring Clinical Depressive Symptoms in Social Media"

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published