-
Notifications
You must be signed in to change notification settings - Fork 1.1k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add a notebook with a visualization of the aprrox_* functions and their errors #7974
Merged
Merged
Changes from 1 commit
Commits
Show all changes
2 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
382 changes: 382 additions & 0 deletions
382
apps/hannk/halide/docs/approx_log2_and_applications.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,382 @@ | ||
{ | ||
"nbformat": 4, | ||
"nbformat_minor": 0, | ||
"metadata": { | ||
"colab": { | ||
"provenance": [] | ||
}, | ||
"kernelspec": { | ||
"name": "python3", | ||
"display_name": "Python 3" | ||
} | ||
}, | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "r1XiiUQGUjpx" | ||
}, | ||
"source": [ | ||
"import numpy as np\n", | ||
"import matplotlib as mpl\n", | ||
"import matplotlib.pyplot as plt\n", | ||
"\n", | ||
"# Many architectures have shifts where the right-hand-side is signed. A negative\n", | ||
"# RHS is the same as a positive shift in the other direction.\n", | ||
"def shift_right(x, y):\n", | ||
" return np.floor(x / 2**y)\n", | ||
"def shift_left(x, y):\n", | ||
" return np.floor(x * 2**y)\n", | ||
"def rounding_shift_right(x, y):\n", | ||
" return np.round(x / 2**y)\n", | ||
"def rounding_shift_left(x, y):\n", | ||
" return np.round(x * 2**y)\n", | ||
"\n", | ||
"def bitwise_and(x, y):\n", | ||
" return np.mod(x, y + 1)\n", | ||
"\n", | ||
"# This is sqrdmulh on ARM\n", | ||
"def multiply_2x_high(x, y):\n", | ||
" return rounding_shift_right(x * y, 15)\n", | ||
"\n", | ||
"def relative_error(x, y):\n", | ||
" return (x - y) / (np.maximum(x, y) + 1e-3)\n", | ||
"\n", | ||
"def plot_results(x, exact, approxs, title, logx = False, logy = False, relative = False, log2_xscale = 0, log2_yscale = 0):\n", | ||
" fig, [p1, p2] = plt.subplots(2, 1)\n", | ||
"\n", | ||
" p1.set_xlabel('x')\n", | ||
" if logx:\n", | ||
" p1.set_xscale('log')\n", | ||
" p1.set_ylabel(title)\n", | ||
" if logy:\n", | ||
" p1.set_yscale('log')\n", | ||
"\n", | ||
" xscale = 2**log2_xscale\n", | ||
" yscale = 2**log2_yscale\n", | ||
"\n", | ||
" exact = np.round(exact*yscale)/yscale\n", | ||
"\n", | ||
" p1.plot(x/xscale, exact)\n", | ||
" for approx in approxs:\n", | ||
" p1.plot(x/xscale, approx/yscale)\n", | ||
"\n", | ||
" p2.set_xlabel('x')\n", | ||
" if logx:\n", | ||
" p2.set_xscale('log')\n", | ||
"\n", | ||
" p2.set_ylabel('relative error' if relative else 'error')\n", | ||
" for approx in approxs:\n", | ||
" p2.plot(x/xscale, relative_error(approx/yscale, exact) if relative else approx/yscale - exact)\n", | ||
"\n", | ||
"def eval_poly(x, p, q):\n", | ||
" x1 = rounding_shift_left(x, 15 - q)\n", | ||
" y = p[0]\n", | ||
" xi = x1\n", | ||
" for i in p[1:]:\n", | ||
" y = y + multiply_2x_high(i, xi)\n", | ||
" xi = multiply_2x_high(xi, x1)\n", | ||
" return rounding_shift_right(y, 15 - q)\n", | ||
"\n", | ||
"points = 6\n", | ||
"degree = 3\n", | ||
"log2_poly_x = np.arange(points, 2 * points + 1) / points\n", | ||
"log2_poly_y = np.log2(log2_poly_x)\n", | ||
"log2_poly = np.polyfit(log2_poly_x - 1, log2_poly_y, degree)\n", | ||
"\n", | ||
"exp2_poly_x = np.arange(points, 2 * points + 1) / points\n", | ||
"exp2_poly_y = np.exp2(exp2_poly_x - 1) - 1\n", | ||
"exp2_poly = np.polyfit(exp2_poly_x - 1, exp2_poly_y, degree)\n", | ||
"\n", | ||
"log2_poly = log2_poly[::-1]\n", | ||
"exp2_poly = exp2_poly[::-1]\n", | ||
"\n", | ||
"print(log2_poly)\n", | ||
"print(exp2_poly)\n", | ||
"\n", | ||
"log2_poly = np.round(log2_poly * 2**15)\n", | ||
"exp2_poly = np.round(exp2_poly * 2**15)\n", | ||
"exp2_poly[0] = 0\n", | ||
"\n", | ||
"print(log2_poly)\n", | ||
"print(exp2_poly)" | ||
], | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "1xjo4hIEo_z5" | ||
}, | ||
"source": [ | ||
"# Approximate N*log2(x*2^q_x), where N = 2^q, and the intermediate computations are\n", | ||
"# restricted to be integers.\n", | ||
"def approx_log2(x, q, q_x = 0):\n", | ||
" # This can be computed with count_leading_zeros\n", | ||
" floor_log2_x = np.select([x > 0], [np.floor(np.log2(x))], [-1])\n", | ||
"\n", | ||
" # We've computed log2(x*2^q_x) = log2(x) + q_x. Subtract that offset now\n", | ||
" # before multiplying by the result quantization.\n", | ||
" result = shift_left(floor_log2_x - q_x, q)\n", | ||
"\n", | ||
" frac = bitwise_and(shift_right(x, floor_log2_x - q), 2**q - 1)\n", | ||
"\n", | ||
" return result + eval_poly(frac, log2_poly, q)\n", | ||
"\n", | ||
"x = np.arange(1, 10000)\n", | ||
"q = 15\n", | ||
"q_x = 2\n", | ||
"log2_x = np.log2(x / 2**q_x)\n", | ||
"approx_log2_x = approx_log2(x, q, q_x)\n", | ||
"\n", | ||
"plot_results(x, log2_x, [approx_log2_x], 'log2(x)', logx=True, log2_xscale=q_x, log2_yscale=q)" | ||
], | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "6uJN5muLsLdE" | ||
}, | ||
"source": [ | ||
"\n", | ||
"# Approximate 2^(x/2^q_x)*2^q\n", | ||
"def approx_exp2(x, q_x, q):\n", | ||
" int_part = shift_right(x, q_x)\n", | ||
" frac_part = x - shift_left(int_part, q_x)\n", | ||
"\n", | ||
" frac_part = eval_poly(frac_part, exp2_poly, q_x)\n", | ||
"\n", | ||
" exp_int_part = shift_left(1, int_part + q)\n", | ||
" return exp_int_part + rounding_shift_right(exp_int_part * frac_part, q_x)\n", | ||
"\n", | ||
"q_x = 10\n", | ||
"q = 15\n", | ||
"x = np.arange(-4000, 2000)\n", | ||
"approx_exp2_x = approx_exp2(x, q_x, q)\n", | ||
"exact = np.exp2(x / 2**q_x)\n", | ||
"\n", | ||
"plot_results(x, exact, [approx_exp2_x], '2^x', False, True, relative=True, log2_xscale=q_x, log2_yscale=q)\n" | ||
], | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "5BP-edzCmNBi" | ||
}, | ||
"source": [ | ||
"q = 15\n", | ||
"x = np.arange(10, 10000) * 10\n", | ||
"round_trip_x = approx_exp2(approx_log2(x, q), q, 0)\n", | ||
"\n", | ||
"plot_results(x, x, [round_trip_x], '2^log2(x)', logx=True, logy=True, relative=True)" | ||
], | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "nyrzI90uNH1s" | ||
}, | ||
"source": [ | ||
"# Approximate 2^q*sqrt(2^(x/2^q_x))\n", | ||
"def sqrt_approx_exp2(x, q_x, q):\n", | ||
" return approx_exp2(x, q_x + 1, q)\n", | ||
"\n", | ||
"q = 11\n", | ||
"q_x = 8\n", | ||
"x = np.arange(-1000, 2000)\n", | ||
"approx_exp2_x = sqrt_approx_exp2(x, q_x, q)\n", | ||
"exact = np.sqrt(np.exp2(x / 2**q_x))\n", | ||
"\n", | ||
"plot_results(x, exact, [approx_exp2_x], 'sqrt(2^x)', relative=True, log2_xscale=q_x, log2_yscale=q)\n" | ||
], | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "Kno5t4VihCTL" | ||
}, | ||
"source": [ | ||
"# Approximate sqrt(x) = 2^((1/2)*log2(x))\n", | ||
"def approx_sqrt(x, q):\n", | ||
" # log2(x) will never be larger than 32, for 32-bit x. So to make the result\n", | ||
" # fit in a 16-bit integer, we can make the precision 2^16/32 = 2048.\n", | ||
" q_x = 11;\n", | ||
"\n", | ||
" log2_sqrt_x = approx_log2(x, q_x - 1)\n", | ||
" return approx_exp2(log2_sqrt_x, q_x, q)\n", | ||
"\n", | ||
"q = 15\n", | ||
"x = np.arange(1, 10000)**2\n", | ||
"sqrt_x = np.sqrt(x)\n", | ||
"approx_sqrt_x = approx_sqrt(x, q)\n", | ||
"\n", | ||
"plot_results(x, sqrt_x, [approx_sqrt_x], 'sqrt(x)', log2_yscale=q, relative=True)\n" | ||
], | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "0dMecIGr92WY" | ||
}, | ||
"source": [ | ||
"# Approximate 2^31/sqrt(x) = 2^(-(1/2)*log2(x))\n", | ||
"def approx_reciprocal_sqrt(x):\n", | ||
" q = 15\n", | ||
" log2_sqrt_x = approx_log2(x, q - 1)\n", | ||
" return approx_exp2(-log2_sqrt_x, q, 31)\n", | ||
"\n", | ||
"x = np.arange(1, 10000)**2\n", | ||
"inv_sqrt_x = 1 / np.sqrt(x)\n", | ||
"approx_reciprocal_sqrt_x = approx_reciprocal_sqrt(x)\n", | ||
"\n", | ||
"plot_results(x, inv_sqrt_x, [approx_reciprocal_sqrt_x], '1/sqrt(x)', True, True, True, log2_yscale=31)\n" | ||
], | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "VFC9aUFcc8d7" | ||
}, | ||
"source": [ | ||
"# Approximate 2^32/x = 2^32*2^(-log2(x))\n", | ||
"def approx_reciprocal(x):\n", | ||
" q = 15;\n", | ||
" log2_x = approx_log2(x, q)\n", | ||
" return approx_exp2(-log2_x, q, 31)\n", | ||
"\n", | ||
"x = 1.01**np.arange(0, 2000)\n", | ||
"inv_x = 1 / x\n", | ||
"approx_inv_x = approx_reciprocal(x)\n", | ||
"# This is ~sqrt(2) times more accurate, but maybe not practical for large x.\n", | ||
"approx_inv_sqrt_x2 = approx_reciprocal_sqrt(x*x)\n", | ||
"\n", | ||
"plot_results(x, inv_x, [approx_inv_x], '1/x', True, True, log2_yscale=31, relative=True)\n", | ||
"plot_results(x, inv_x, [approx_inv_sqrt_x2], '1/x', True, True, log2_yscale=31, relative=True)\n" | ||
], | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "6BhQzLIZCcKC" | ||
}, | ||
"source": [ | ||
"# Approximate log2(exp2(x) + c)\n", | ||
"def approx_log2_exp2_plus_constant(x, c, q_x, q):\n", | ||
" # When x/2^q_x is large, approx_exp2 below will overflow. But when it is large\n", | ||
" # we don't need it to be very precise\n", | ||
" q_exp = 16 #np.minimum(16, 16 - np.floor(np.log2(np.maximum(x, 1))))\n", | ||
" one = 2**q_exp\n", | ||
"\n", | ||
" one_plus_exp2_x = one * c + approx_exp2(x, q_x, q_exp)\n", | ||
" # Mimic overflow of int32\n", | ||
" one_plus_exp2_x = np.mod(one_plus_exp2_x, 2**31)\n", | ||
"\n", | ||
" raw = approx_log2(one_plus_exp2_x, q, q_exp)\n", | ||
"\n", | ||
" line = rounding_shift_right(x, q_x - q)\n", | ||
"\n", | ||
" threshold = 30 - q_exp\n", | ||
" result = np.select([shift_right(x, q_x) < threshold], [raw], line)\n", | ||
" return result\n", | ||
"\n", | ||
"def approx_log2p1_exp2(x, q_x, q):\n", | ||
" return approx_log2_exp2_plus_constant(x, 1, q_x, q)\n", | ||
"\n", | ||
"def approx_log2m1_exp2(x, q_x, q):\n", | ||
" return approx_log2_exp2_plus_constant(x, -1, q_x, q)\n", | ||
"\n", | ||
"x = np.arange(-4000, 4000)*8\n", | ||
"q_x = 11\n", | ||
"q = 15\n", | ||
"\n", | ||
"exact = np.log2(np.exp2(x / 2**q_x) + 1)\n", | ||
"approx = approx_log2p1_exp2(x, q_x, q)\n", | ||
"plot_results(x, exact, [approx], 'log2(2^x + 1)', log2_xscale=q_x, log2_yscale=q)\n", | ||
"\n", | ||
"x = np.arange(1, 4000)*8\n", | ||
"exact = np.log2(np.exp2(x / 2**q_x) - 1)\n", | ||
"approx = approx_log2m1_exp2(x, q_x, q)\n", | ||
"plot_results(x, exact, [approx], 'log2(2^x - 1)', log2_xscale=q_x, log2_yscale=q)\n" | ||
], | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "G6n1u8fcUf-3" | ||
}, | ||
"source": [ | ||
"# Approximate logistic(x) = 1/(e^-x + 1)\n", | ||
"# = 2^log2(1/(e^-x + 1))\n", | ||
"# = 2^-log2(e^-x + 1)\n", | ||
"def approx_logistic(x, q_x, q):\n", | ||
" x2 = multiply_2x_high(x, np.round(-np.log2(np.exp(1)) * 2**14))\n", | ||
" q_exp = 11\n", | ||
" log2_d = approx_log2p1_exp2(x2, q_x - 1, q_exp)\n", | ||
" return approx_exp2(-log2_d, q_exp, q)\n", | ||
"\n", | ||
"x = np.arange(-4000, 4000)*8\n", | ||
"q_x = 11\n", | ||
"q = 15\n", | ||
"exact = 1 / (1 + np.exp(-x / 2**q_x))\n", | ||
"approx = approx_logistic(x, q_x, q)\n", | ||
"plot_results(x, exact, [approx], '1/(1 + e^-x)', log2_xscale=q_x, log2_yscale=q)" | ||
], | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "LBXXNc_8twQD" | ||
}, | ||
"source": [ | ||
"# Approximate tanh(x) = (e^2x - 1)/(e^2x + 1)\n", | ||
"# = 2^log2((e^2x - 1)/(e^2x + 1))\n", | ||
"# = 2^(log2(e^2x - 1) - log2(e^2x + 1))\n", | ||
"def approx_tanh(x, q_x, q):\n", | ||
" abs_x_base2 = multiply_2x_high(np.abs(x), np.round(np.log2(np.exp(1)) * 2**14))\n", | ||
" q_exp = 11\n", | ||
" log2_n = approx_log2m1_exp2(abs_x_base2, q_x - 2, q_exp)\n", | ||
" log2_d = approx_log2p1_exp2(abs_x_base2, q_x - 2, q_exp)\n", | ||
" # Saturate at int16\n", | ||
" log2_n = np.clip(log2_n, -(2**15), 2**15)\n", | ||
" log2_d = np.clip(log2_d, -(2**15), 2**15)\n", | ||
" return np.sign(x) * approx_exp2(log2_n - log2_d, q_exp, q)\n", | ||
"\n", | ||
"x = np.arange(-4000, 4000)*8\n", | ||
"q_x = 12\n", | ||
"q = 15\n", | ||
"exact = np.tanh(x / 2**q_x)\n", | ||
"approx = approx_tanh(x, q_x, q)\n", | ||
"\n", | ||
"points = 20\n", | ||
"poly_x = np.arange(0, points * 3) / points\n", | ||
"poly_y = np.tanh(poly_x)\n", | ||
"poly = np.polyfit(poly_x, poly_y, 6)\n", | ||
"approx2 = np.polyval(poly, x / 2**q_x) * 2**q\n", | ||
"\n", | ||
"\n", | ||
"plot_results(x, exact, [approx], 'tanh(x)', log2_xscale=q_x, log2_yscale=q)" | ||
], | ||
"execution_count": null, | ||
"outputs": [] | ||
} | ||
] | ||
} |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
s/aprrox_/approx_/