You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Given an array A, partition it into two (contiguous) subarrays left and right so that:
Every element in left is less than or equal to every element in right.
left and right are non-empty.
left has the smallest possible size.
Return the length of left after such a partitioning. It is guaranteed that such a partitioning exists.
Example 1:
Input: [5,0,3,8,6]
Output: 3
Explanation: left = [5,0,3], right = [8,6]
Example 2:
Input: [1,1,1,0,6,12]
Output: 4
Explanation: left = [1,1,1,0], right = [6,12]
Note:
2 <= A.length <= 30000
0 <= A[i] <= 10^6
It is guaranteed there is at least one way to partition A as described.
这道题说是给了一个数组A,让我们分成两个相邻的子数组 left 和 right,使得 left 中的所有数字小于等于 right 中的,并限定了每个输入数组必定会有这么一个分割点,让返回数组 left 的长度。这道题并不算一道难题,当然最简单并暴力的方法就是遍历所有的分割点,然后去验证左边的数组是否都小于等于右边的数,这种写法估计会超时,这里就不去实现了。直接来想优化解法吧,由于分割成的 left 和 right 数组本身不一定是有序的,只是要求 left 中的最大值要小于等于 right 中的最小值,只要这个条件满足了,一定就是符合题意的分割。left 数组的最大值很好求,在遍历数组的过程中就可以得到,而 right 数组的最小值怎么求呢?其实可以反向遍历数组,并且使用一个数组 backMin,其中 backMin[i] 表示在范围 [i, n-1] 范围内的最小值,有了这个数组后,再正向遍历一次数组,每次更新当前最大值 curMax,这就是范围 [0, i] 内的最大值,通过 backMin 数组快速得到范围 [i+1, n-1] 内的最小值,假如 left 的最大值小于等于 right 的最小值,则 i+1 就是 left 的长度,直接返回即可,参见代码如下:
解法一:
class Solution {
public:
int partitionDisjoint(vector<int>& A) {
int n = A.size(), curMax = INT_MIN;
vector<int> backMin(n, A.back());
for (int i = n - 2; i >= 0; --i) {
backMin[i] = min(backMin[i + 1], A[i]);
}
for (int i = 0; i < n - 1; ++i) {
curMax = max(curMax, A[i]);
if (curMax <= backMin[i + 1]) return i + 1;
}
return 0;
}
};
下面来看论坛上的主流解法,只需要一次遍历即可,并且不需要额外的空间,这里使用三个变量,partitionIdx 表示分割点的位置,preMax 表示 left 中的最大值,curMax 表示当前的最大值。思路是遍历每个数字,更新当前最大值 curMax,并且判断若当前数字 A[i] 小于 preMax,说明这个数字也一定是属于 left 数组的,此时整个遍历到的区域应该都是属于 left 的,所以 preMax 要更新为 curMax,并且当前位置也就是潜在的分割点,所以 partitionIdx 更新为i。由于题目中限定了一定会有分割点,所以这种方法是可以得到正确结果的,参见代码如下:
解法二:
class Solution {
public:
int partitionDisjoint(vector<int>& A) {
int partitionIdx = 0, preMax = A[0], curMax = preMax;
for (int i = 1; i < A.size(); ++i) {
curMax = max(curMax, A[i]);
if (A[i] < preMax) {
preMax = curMax;
partitionIdx = i;
}
}
return partitionIdx + 1;
}
};
Given an array
A
, partition it into two (contiguous) subarraysleft
andright
so that:left
is less than or equal to every element inright
.left
andright
are non-empty.left
has the smallest possible size.Return the length of
left
after such a partitioning. It is guaranteed that such a partitioning exists.Example 1:
Example 2:
Note:
2 <= A.length <= 30000
0 <= A[i] <= 10^6
A
as described.这道题说是给了一个数组A,让我们分成两个相邻的子数组 left 和 right,使得 left 中的所有数字小于等于 right 中的,并限定了每个输入数组必定会有这么一个分割点,让返回数组 left 的长度。这道题并不算一道难题,当然最简单并暴力的方法就是遍历所有的分割点,然后去验证左边的数组是否都小于等于右边的数,这种写法估计会超时,这里就不去实现了。直接来想优化解法吧,由于分割成的 left 和 right 数组本身不一定是有序的,只是要求 left 中的最大值要小于等于 right 中的最小值,只要这个条件满足了,一定就是符合题意的分割。left 数组的最大值很好求,在遍历数组的过程中就可以得到,而 right 数组的最小值怎么求呢?其实可以反向遍历数组,并且使用一个数组 backMin,其中 backMin[i] 表示在范围 [i, n-1] 范围内的最小值,有了这个数组后,再正向遍历一次数组,每次更新当前最大值 curMax,这就是范围 [0, i] 内的最大值,通过 backMin 数组快速得到范围 [i+1, n-1] 内的最小值,假如 left 的最大值小于等于 right 的最小值,则 i+1 就是 left 的长度,直接返回即可,参见代码如下:
解法一:
下面来看论坛上的主流解法,只需要一次遍历即可,并且不需要额外的空间,这里使用三个变量,partitionIdx 表示分割点的位置,preMax 表示 left 中的最大值,curMax 表示当前的最大值。思路是遍历每个数字,更新当前最大值 curMax,并且判断若当前数字 A[i] 小于 preMax,说明这个数字也一定是属于 left 数组的,此时整个遍历到的区域应该都是属于 left 的,所以 preMax 要更新为 curMax,并且当前位置也就是潜在的分割点,所以 partitionIdx 更新为i。由于题目中限定了一定会有分割点,所以这种方法是可以得到正确结果的,参见代码如下:
解法二:
Github 同步地址:
#915
参考资料:
https://leetcode.com/problems/partition-array-into-disjoint-intervals/
https://leetcode.com/problems/partition-array-into-disjoint-intervals/discuss/175945/Java-one-pass-7-lines
https://leetcode.com/problems/partition-array-into-disjoint-intervals/discuss/175842/JAVA-EASIEST-SIMPLEST
LeetCode All in One 题目讲解汇总(持续更新中...)
The text was updated successfully, but these errors were encountered: