We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
请点击下方图片观看讲解视频 Click below image to watch YouTube Video
The set [1, 2, 3, ..., n] contains a total of n! unique permutations.
[1, 2, 3, ..., n]
n!
By listing and labeling all of the permutations in order, we get the following sequence for n = 3:
n = 3
"123"
"132"
"213"
"231"
"312"
"321"
Given n and k, return the kth permutation sequence.
n
k
kth
Example 1:
Input: n = 3, k = 3 Output: "213"
Example 2:
Input: n = 4, k = 9 Output: "2314"
Example 3:
Input: n = 3, k = 1 Output: "123"
Constraints:
1 <= n <= 9
1 <= k <= n!
这道题是让求出n个数字的第k个排列组合,由于其特殊性,我们不用将所有的排列组合的情况都求出来,然后返回其第k个,这里可以只求出第k个排列组合即可,那么难点就在于如何知道数字的排列顺序,可参见网友喜刷刷的博客,首先要知道当 n = 3 时,其排列组合共有 3! = 6 种,当 n = 4 时,其排列组合共有 4! = 24 种,这里就以 n = 4, k = 17 的情况来分析,所有排列组合情况如下:
1234 1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431 3124 3142 3214 3241 3412 <--- k = 17 3421 4123 4132 4213 4231 4312 4321
可以发现,每一位上 1,2,3,4 分别都出现了6次,当最高位上的数字确定了,第二高位每个数字都出现了2次,当第二高位也确定了,第三高位上的数字都只出现了1次,当第三高位确定了,那么第四高位上的数字也只能出现一次,下面来看 k = 17 这种情况的每位数字如何确定,由于 k = 17 是转化为数组下标为 16:
最高位可取 1,2,3,4 中的一个,每个数字出现 3!= 6 次(因为当最高位确定了,后面三位可以任意排列,所以是 3!,那么最高位的数字就会重复 3!次),所以 k = 16 的第一位数字的下标为 16 / 6 = 2,在 "1234" 中即3被取出。这里的k是要求的坐标为k的全排列序列,定义 k' 为当最高位确定后,要求的全排序列在新范围中的位置,同理,k'' 为当第二高为确定后,所要求的全排列序列在新范围中的位置,以此类推,下面来具体看看:
第二位此时从 1,2,4 中取一个,k = 16,则此时的 k' = 16 % (3!) = 4,注意思考这里为何要取余,如果对这 24 个数以6个一组来分,那么 k=16 这个位置就是在第三组(k/6 = 2)中的第五个(k%6 = 4)数字。如下所示,而剩下的每个数字出现 2!= 2 次,所以第二数字的下标为 4 / 2 = 2,在 "124" 中即4被取出。
3124 3142 3214 3241 3412 <--- k' = 4 3421
第三位此时从 1,2 中取一个,k' = 4,则此时的 k'' = 4 % (2!) = 0,如下所示,而剩下的每个数字出现 1!= 1 次,所以第三个数字的下标为 0 / 1 = 0,在 "12" 中即1被取出。
3412 <--- k'' = 0 3421
第四位是从2中取一个,k'' = 0,则此时的 k''' = 0 % (1!) = 0,如下所示,而剩下的每个数字出现 0!= 1 次,所以第四个数字的下标为 0 / 1= 0,在 "2" 中即2被取出。
3412 <--- k''' = 0
那么就可以找出规律了 a1 = k / (n - 1)! k1 = k
a2 = k1 / (n - 2)! k2 = k1 % (n - 2)! ...
an-1 = kn-2 / 1! kn-1 = kn-2 % 1!
an = kn-1 / 0! kn = kn-1 % 0!
代码如下:
class Solution { public: string getPermutation(int n, int k) { string res; string num = "123456789"; vector<int> f(n, 1); for (int i = 1; i < n; ++i) f[i] = f[i - 1] * i; --k; for (int i = n; i >= 1; --i) { int j = k / f[i - 1]; k %= f[i - 1]; res.push_back(num[j]); num.erase(j, 1); } return res; } };
Github 同步地址:
#60
类似题目:
Next Permutation
Permutations
参考资料:
https://leetcode.com/problems/permutation-sequence/
https://leetcode.com/problems/permutation-sequence/discuss/22508/An-iterative-solution-for-reference
LeetCode All in One 题目讲解汇总(持续更新中...)
(欢迎加入博主的知识星球,博主将及时答疑解惑,并分享刷题经验与总结,快快加入吧~)
喜欢请点赞,疼爱请打赏❤️~.~
微信打赏
|
Venmo 打赏
---|---
The text was updated successfully, but these errors were encountered:
No branches or pull requests
请点击下方图片观看讲解视频
Click below image to watch YouTube Video
The set
[1, 2, 3, ..., n]
contains a total ofn!
unique permutations.By listing and labeling all of the permutations in order, we get the following sequence for
n = 3
:"123"
"132"
"213"
"231"
"312"
"321"
Given
n
andk
, return thekth
permutation sequence.Example 1:
Example 2:
Example 3:
Constraints:
1 <= n <= 9
1 <= k <= n!
这道题是让求出n个数字的第k个排列组合,由于其特殊性,我们不用将所有的排列组合的情况都求出来,然后返回其第k个,这里可以只求出第k个排列组合即可,那么难点就在于如何知道数字的排列顺序,可参见网友喜刷刷的博客,首先要知道当 n = 3 时,其排列组合共有 3! = 6 种,当 n = 4 时,其排列组合共有 4! = 24 种,这里就以 n = 4, k = 17 的情况来分析,所有排列组合情况如下:
1234
1243
1324
1342
1423
1432
2134
2143
2314
2341
2413
2431
3124
3142
3214
3241
3412 <--- k = 17
3421
4123
4132
4213
4231
4312
4321
可以发现,每一位上 1,2,3,4 分别都出现了6次,当最高位上的数字确定了,第二高位每个数字都出现了2次,当第二高位也确定了,第三高位上的数字都只出现了1次,当第三高位确定了,那么第四高位上的数字也只能出现一次,下面来看 k = 17 这种情况的每位数字如何确定,由于 k = 17 是转化为数组下标为 16:
最高位可取 1,2,3,4 中的一个,每个数字出现 3!= 6 次(因为当最高位确定了,后面三位可以任意排列,所以是 3!,那么最高位的数字就会重复 3!次),所以 k = 16 的第一位数字的下标为 16 / 6 = 2,在 "1234" 中即3被取出。这里的k是要求的坐标为k的全排列序列,定义 k' 为当最高位确定后,要求的全排序列在新范围中的位置,同理,k'' 为当第二高为确定后,所要求的全排列序列在新范围中的位置,以此类推,下面来具体看看:
第二位此时从 1,2,4 中取一个,k = 16,则此时的 k' = 16 % (3!) = 4,注意思考这里为何要取余,如果对这 24 个数以6个一组来分,那么 k=16 这个位置就是在第三组(k/6 = 2)中的第五个(k%6 = 4)数字。如下所示,而剩下的每个数字出现 2!= 2 次,所以第二数字的下标为 4 / 2 = 2,在 "124" 中即4被取出。
3124
3142
3214
3241
3412 <--- k' = 4
3421
第三位此时从 1,2 中取一个,k' = 4,则此时的 k'' = 4 % (2!) = 0,如下所示,而剩下的每个数字出现 1!= 1 次,所以第三个数字的下标为 0 / 1 = 0,在 "12" 中即1被取出。
3412 <--- k'' = 0
3421
第四位是从2中取一个,k'' = 0,则此时的 k''' = 0 % (1!) = 0,如下所示,而剩下的每个数字出现 0!= 1 次,所以第四个数字的下标为 0 / 1= 0,在 "2" 中即2被取出。
3412 <--- k''' = 0
那么就可以找出规律了
a1 = k / (n - 1)!
k1 = k
a2 = k1 / (n - 2)!
k2 = k1 % (n - 2)!
...
an-1 = kn-2 / 1!
kn-1 = kn-2 % 1!
an = kn-1 / 0!
kn = kn-1 % 0!
代码如下:
Github 同步地址:
#60
类似题目:
Next Permutation
Permutations
参考资料:
https://leetcode.com/problems/permutation-sequence/
https://leetcode.com/problems/permutation-sequence/discuss/22508/An-iterative-solution-for-reference
LeetCode All in One 题目讲解汇总(持续更新中...)
(欢迎加入博主的知识星球,博主将及时答疑解惑,并分享刷题经验与总结,快快加入吧~)
喜欢请点赞,疼爱请打赏❤️~.~
微信打赏
|
Venmo 打赏
---|---
The text was updated successfully, but these errors were encountered: