-
Notifications
You must be signed in to change notification settings - Fork 2.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Allow plot tooltip to show extra columns (#9800)
* changes * add changeset * changes * changes * chanes * changes --------- Co-authored-by: Ali Abid <aliabid94@gmail.com> Co-authored-by: gradio-pr-bot <gradio-pr-bot@users.noreply.github.com> Co-authored-by: Abubakar Abid <abubakar@huggingface.co>
- Loading branch information
1 parent
120198f
commit d1cfe1e
Showing
7 changed files
with
61 additions
and
26 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,6 @@ | ||
--- | ||
"@gradio/nativeplot": minor | ||
"gradio": minor | ||
--- | ||
|
||
feat:Allow plot tooltip to show extra columns |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1 @@ | ||
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: scatter_plot"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio vega_datasets pandas"]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "from vega_datasets import data\n", "\n", "cars = data.cars()\n", "iris = data.iris()\n", "\n", "# # Or generate your own fake data\n", "\n", "# import pandas as pd\n", "# import random\n", "\n", "# cars_data = {\n", "# \"Name\": [\"car name \" + f\" {int(i/10)}\" for i in range(400)],\n", "# \"Miles_per_Gallon\": [random.randint(10, 30) for _ in range(400)],\n", "# \"Origin\": [random.choice([\"USA\", \"Europe\", \"Japan\"]) for _ in range(400)],\n", "# \"Horsepower\": [random.randint(50, 250) for _ in range(400)],\n", "# }\n", "\n", "# iris_data = {\n", "# \"petalWidth\": [round(random.uniform(0, 2.5), 2) for _ in range(150)],\n", "# \"petalLength\": [round(random.uniform(0, 7), 2) for _ in range(150)],\n", "# \"species\": [\n", "# random.choice([\"setosa\", \"versicolor\", \"virginica\"]) for _ in range(150)\n", "# ],\n", "# }\n", "\n", "# cars = pd.DataFrame(cars_data)\n", "# iris = pd.DataFrame(iris_data)\n", "\n", "def scatter_plot_fn(dataset):\n", " if dataset == \"iris\":\n", " return gr.ScatterPlot(\n", " value=iris,\n", " x=\"petalWidth\",\n", " y=\"petalLength\",\n", " color=\"species\",\n", " title=\"Iris Dataset\",\n", " color_legend_title=\"Species\",\n", " x_title=\"Petal Width\",\n", " y_title=\"Petal Length\",\n", " tooltip=[\"petalWidth\", \"petalLength\", \"species\"],\n", " caption=\"\",\n", " )\n", " else:\n", " return gr.ScatterPlot(\n", " value=cars,\n", " x=\"Horsepower\",\n", " y=\"Miles_per_Gallon\",\n", " color=\"Origin\",\n", " tooltip=\"Name\",\n", " title=\"Car Data\",\n", " y_title=\"Miles per Gallon\",\n", " color_legend_title=\"Origin of Car\",\n", " caption=\"MPG vs Horsepower of various cars\",\n", " )\n", "\n", "with gr.Blocks() as scatter_plot:\n", " with gr.Row():\n", " with gr.Column():\n", " dataset = gr.Dropdown(choices=[\"cars\", \"iris\"], value=\"cars\")\n", " with gr.Column():\n", " plot = gr.ScatterPlot()\n", " dataset.change(scatter_plot_fn, inputs=dataset, outputs=plot)\n", " scatter_plot.load(fn=scatter_plot_fn, inputs=dataset, outputs=plot)\n", "\n", "if __name__ == \"__main__\":\n", " scatter_plot.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5} | ||
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: scatter_plot"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio vega_datasets pandas"]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "from vega_datasets import data\n", "\n", "cars = data.cars()\n", "iris = data.iris()\n", "\n", "# # Or generate your own fake data\n", "\n", "# import pandas as pd\n", "# import random\n", "\n", "# cars_data = {\n", "# \"Name\": [\"car name \" + f\" {int(i/10)}\" for i in range(400)],\n", "# \"Miles_per_Gallon\": [random.randint(10, 30) for _ in range(400)],\n", "# \"Origin\": [random.choice([\"USA\", \"Europe\", \"Japan\"]) for _ in range(400)],\n", "# \"Horsepower\": [random.randint(50, 250) for _ in range(400)],\n", "# }\n", "\n", "# iris_data = {\n", "# \"petalWidth\": [round(random.uniform(0, 2.5), 2) for _ in range(150)],\n", "# \"petalLength\": [round(random.uniform(0, 7), 2) for _ in range(150)],\n", "# \"species\": [\n", "# random.choice([\"setosa\", \"versicolor\", \"virginica\"]) for _ in range(150)\n", "# ],\n", "# }\n", "\n", "# cars = pd.DataFrame(cars_data)\n", "# iris = pd.DataFrame(iris_data)\n", "\n", "def scatter_plot_fn(dataset):\n", " if dataset == \"iris\":\n", " return gr.ScatterPlot(\n", " value=iris,\n", " x=\"petalWidth\",\n", " y=\"petalLength\",\n", " color=\"species\",\n", " title=\"Iris Dataset\",\n", " color_legend_title=\"Species\",\n", " x_title=\"Petal Width\",\n", " y_title=\"Petal Length\",\n", " tooltip=[\"petalWidth\", \"petalLength\", \"species\"],\n", " caption=\"\",\n", " )\n", " else:\n", " return gr.ScatterPlot(\n", " value=cars,\n", " x=\"Horsepower\",\n", " y=\"Miles_per_Gallon\",\n", " color=\"Origin\",\n", " tooltip=[\"Name\"],\n", " title=\"Car Data\",\n", " y_title=\"Miles per Gallon\",\n", " color_legend_title=\"Origin of Car\",\n", " caption=\"MPG vs Horsepower of various cars\",\n", " )\n", "\n", "with gr.Blocks() as scatter_plot:\n", " with gr.Row():\n", " with gr.Column():\n", " dataset = gr.Dropdown(choices=[\"cars\", \"iris\"], value=\"cars\")\n", " with gr.Column():\n", " plot = gr.ScatterPlot()\n", " dataset.change(scatter_plot_fn, inputs=dataset, outputs=plot)\n", " scatter_plot.load(fn=scatter_plot_fn, inputs=dataset, outputs=plot)\n", "\n", "if __name__ == \"__main__\":\n", " scatter_plot.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1 @@ | ||
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: scatterplot_component"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio vega_datasets"]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "from vega_datasets import data\n", "\n", "cars = data.cars()\n", "\n", "with gr.Blocks() as demo:\n", " gr.ScatterPlot(\n", " value=cars,\n", " x=\"Horsepower\",\n", " y=\"Miles_per_Gallon\",\n", " color=\"Origin\",\n", " tooltip=\"Name\",\n", " title=\"Car Data\",\n", " y_title=\"Miles per Gallon\",\n", " color_legend_title=\"Origin of Car\",\n", " container=False,\n", " )\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5} | ||
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: scatterplot_component"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio vega_datasets"]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "from vega_datasets import data\n", "\n", "cars = data.cars()\n", "\n", "with gr.Blocks() as demo:\n", " gr.ScatterPlot(\n", " value=cars,\n", " x=\"Horsepower\",\n", " y=\"Miles_per_Gallon\",\n", " color=\"Origin\",\n", " tooltip=[\"Name\"],\n", " title=\"Car Data\",\n", " y_title=\"Miles per Gallon\",\n", " color_legend_title=\"Origin of Car\",\n", " container=False,\n", " )\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters