-
Notifications
You must be signed in to change notification settings - Fork 350
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
docs: update import paths for Gemini README
PiperOrigin-RevId: 647406693
- Loading branch information
1 parent
872b455
commit 46b3042
Showing
4 changed files
with
706 additions
and
0 deletions.
There are no files selected for viewing
188 changes: 188 additions & 0 deletions
188
google3/third_party/py/google/cloud/aiplatform/gemini_docs/README.rst
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,188 @@ | ||
# Vertex Generative AI SDK for Python | ||
The Vertex Generative AI SDK helps developers use Google's generative AI | ||
[Gemini models](http://cloud.google.com/vertex-ai/docs/generative-ai/multimodal/overview) | ||
and [PaLM language models](http://cloud.google.com/vertex-ai/docs/generative-ai/language-model-overview) | ||
to build AI-powered features and applications. | ||
The SDKs support use cases like the following: | ||
|
||
- Generate text from texts, images and videos (multimodal generation) | ||
- Build stateful multi-turn conversations (chat) | ||
- Function calling | ||
|
||
## Installation | ||
|
||
To install the | ||
[google-cloud-aiplatform](https://pypi.org/project/google-cloud-aiplatform/) | ||
Python package, run the following command: | ||
|
||
```shell | ||
pip3 install --upgrade --user "google-cloud-aiplatform>=1.38" | ||
``` | ||
|
||
## Usage | ||
|
||
For detailed instructions, see [quickstart](http://cloud.google.com/vertex-ai/docs/generative-ai/start/quickstarts/quickstart-multimodal) and [Introduction to multimodal classes in the Vertex AI SDK](http://cloud.google.com/vertex-ai/docs/generative-ai/multimodal/sdk-for-gemini/gemini-sdk-overview-reference). | ||
|
||
#### Imports: | ||
```python | ||
from vertexai.generative_models import GenerativeModel, Image, Content, Part, Tool, FunctionDeclaration, GenerationConfig | ||
``` | ||
|
||
#### Basic generation: | ||
```python | ||
from vertexai.generative_models import GenerativeModel | ||
model = GenerativeModel("gemini-pro") | ||
print(model.generate_content("Why is sky blue?")) | ||
``` | ||
|
||
#### Using images and videos | ||
```python | ||
from vertexai.generative_models import GenerativeModel, Image | ||
vision_model = GenerativeModel("gemini-pro-vision") | ||
# Local image | ||
image = Image.load_from_file("image.jpg") | ||
print(vision_model.generate_content(["What is shown in this image?", image])) | ||
# Image from Cloud Storage | ||
image_part = generative_models.Part.from_uri("gs://download.tensorflow.org/example_images/320px-Felis_catus-cat_on_snow.jpg", mime_type="image/jpeg") | ||
print(vision_model.generate_content([image_part, "Describe this image?"])) | ||
# Text and video | ||
video_part = Part.from_uri("gs://cloud-samples-data/video/animals.mp4", mime_type="video/mp4") | ||
print(vision_model.generate_content(["What is in the video? ", video_part])) | ||
``` | ||
|
||
#### Chat | ||
``` | ||
from vertexai.generative_models import GenerativeModel, Image | ||
vision_model = GenerativeModel("gemini-ultra-vision") | ||
vision_chat = vision_model.start_chat() | ||
image = Image.load_from_file("image.jpg") | ||
print(vision_chat.send_message(["I like this image.", image])) | ||
print(vision_chat.send_message("What things do I like?.")) | ||
``` | ||
|
||
#### System instructions | ||
``` | ||
from vertexai.generative_models import GenerativeModel | ||
model = GenerativeModel( | ||
"gemini-1.0-pro", | ||
system_instruction=[ | ||
"Talk like a pirate.", | ||
"Don't use rude words.", | ||
], | ||
) | ||
print(model.generate_content("Why is sky blue?")) | ||
``` | ||
|
||
#### Function calling | ||
|
||
``` | ||
# First, create tools that the model is can use to answer your questions. | ||
# Describe a function by specifying it's schema (JsonSchema format) | ||
get_current_weather_func = generative_models.FunctionDeclaration( | ||
name="get_current_weather", | ||
description="Get the current weather in a given location", | ||
parameters={ | ||
"type": "object", | ||
"properties": { | ||
"location": { | ||
"type": "string", | ||
"description": "The city and state, e.g. San Francisco, CA" | ||
}, | ||
"unit": { | ||
"type": "string", | ||
"enum": [ | ||
"celsius", | ||
"fahrenheit", | ||
] | ||
} | ||
}, | ||
"required": [ | ||
"location" | ||
] | ||
}, | ||
) | ||
# Tool is a collection of related functions | ||
weather_tool = generative_models.Tool( | ||
function_declarations=[get_current_weather_func], | ||
) | ||
|
||
# Use tools in chat: | ||
model = GenerativeModel( | ||
"gemini-pro", | ||
# You can specify tools when creating a model to avoid having to send them with every request. | ||
tools=[weather_tool], | ||
) | ||
chat = model.start_chat() | ||
# Send a message to the model. The model will respond with a function call. | ||
print(chat.send_message("What is the weather like in Boston?")) | ||
# Then send a function response to the model. The model will use it to answer. | ||
print(chat.send_message( | ||
Part.from_function_response( | ||
name="get_current_weather", | ||
response={ | ||
"content": {"weather": "super nice"}, | ||
} | ||
), | ||
)) | ||
``` | ||
|
||
|
||
#### Automatic Function calling | ||
|
||
``` | ||
from vertexai.preview.generative_models import GenerativeModel, Tool, FunctionDeclaration, AutomaticFunctionCallingResponder | ||
|
||
# First, create functions that the model can use to answer your questions. | ||
def get_current_weather(location: str, unit: str = "centigrade"): | ||
"""Gets weather in the specified location. | ||
|
||
Args: | ||
location: The location for which to get the weather. | ||
unit: Optional. Temperature unit. Can be Centigrade or Fahrenheit. Defaults to Centigrade. | ||
""" | ||
return dict( | ||
location=location, | ||
unit=unit, | ||
weather="Super nice, but maybe a bit hot.", | ||
) | ||
|
||
# Infer function schema | ||
get_current_weather_func = FunctionDeclaration.from_func(get_current_weather) | ||
# Tool is a collection of related functions | ||
weather_tool = Tool( | ||
function_declarations=[get_current_weather_func], | ||
) | ||
|
||
# Use tools in chat: | ||
model = GenerativeModel( | ||
"gemini-pro", | ||
# You can specify tools when creating a model to avoid having to send them with every request. | ||
tools=[weather_tool], | ||
) | ||
|
||
# Activate automatic function calling: | ||
afc_responder = AutomaticFunctionCallingResponder( | ||
# Optional: | ||
max_automatic_function_calls=5, | ||
) | ||
chat = model.start_chat(responder=afc_responder) | ||
# Send a message to the model. The model will respond with a function call. | ||
# The SDK will automatically call the requested function and respond to the model. | ||
# The model will use the function call response to answer the original question. | ||
print(chat.send_message("What is the weather like in Boston?")) | ||
``` | ||
|
||
## Documentation | ||
|
||
You can find complete documentation for the Vertex AI SDKs and the Gemini model in the Google Cloud [documentation](https://cloud.google.com/vertex-ai/docs/generative-ai/learn/overview) | ||
|
||
## Contributing | ||
|
||
See [Contributing](https://github.com/googleapis/python-aiplatform/blob/main/CONTRIBUTING.rst) for more information on contributing to the Vertex AI Python SDK. | ||
|
||
## License | ||
|
||
The contents of this repository are licensed under the [Apache License, version 2.0](http://www.apache.org/licenses/LICENSE-2.0). |
Oops, something went wrong.