Skip to content
This repository has been archived by the owner on Mar 28, 2022. It is now read-only.

Commit

Permalink
return only noise when noise=True
Browse files Browse the repository at this point in the history
1. update deepfool example print message
2. add deepfool example using noise
  • Loading branch information
Zhitao Gong committed Dec 29, 2017
1 parent 78d6e1a commit 734c5b7
Show file tree
Hide file tree
Showing 6 changed files with 297 additions and 11 deletions.
7 changes: 4 additions & 3 deletions attacks/deepfool.py
Original file line number Diff line number Diff line change
Expand Up @@ -48,10 +48,11 @@ def _f(xi):
delta = tf.map_fn(_f, x, dtype=(tf.float32), back_prop=False,
name='deepfool')

xadv = tf.clip_by_value(x + delta*(1+eta), clip_min, clip_max)

if noise:
return xadv, delta
return delta

xadv = tf.stop_gradient(x + delta*(1+eta))
xadv = tf.clip_by_value(xadv, clip_min, clip_max)
return xadv


Expand Down
4 changes: 2 additions & 2 deletions example/deepfool_mnist.py
Original file line number Diff line number Diff line change
Expand Up @@ -210,9 +210,9 @@ def predict(sess, env, X_data, batch_size=128):

def make_deepfool(sess, env, X_data, epochs=1, eps=0.01, batch_size=128):
"""
Generate FGSM by running env.xadv.
Generate DeepFool by running env.xadv.
"""
print('\nMaking adversarials via FGSM')
print('\nMaking adversarials via DeepFool')

n_sample = X_data.shape[0]
n_batch = int((n_sample + batch_size - 1) / batch_size)
Expand Down
4 changes: 2 additions & 2 deletions example/deepfool_mnist2.py
Original file line number Diff line number Diff line change
Expand Up @@ -228,9 +228,9 @@ def predict(sess, env, X_data, batch_size=128):

def make_deepfool(sess, env, X_data, epochs=1, batch_size=128):
"""
Generate FGSM by running env.xadv.
Generate DeepFool by running env.xadv.
"""
print('\nMaking adversarials via FGSM')
print('\nMaking adversarials via DeepFool')

n_sample = X_data.shape[0]
n_batch = int((n_sample + batch_size - 1) / batch_size)
Expand Down
4 changes: 2 additions & 2 deletions example/deepfool_mnist2_batch.py
Original file line number Diff line number Diff line change
Expand Up @@ -228,9 +228,9 @@ def predict(sess, env, X_data, batch_size=128):

def make_deepfool(sess, env, X_data, epochs=1, batch_size=128):
"""
Generate FGSM by running env.xadv.
Generate DeepFool by running env.xadv.
"""
print('\nMaking adversarials via FGSM')
print('\nMaking adversarials via DeepFool')

n_sample = X_data.shape[0]
n_batch = int((n_sample + batch_size - 1) / batch_size)
Expand Down
4 changes: 2 additions & 2 deletions example/deepfool_mnist_batch.py
Original file line number Diff line number Diff line change
Expand Up @@ -210,9 +210,9 @@ def predict(sess, env, X_data, batch_size=128):

def make_deepfool(sess, env, X_data, epochs=1, eps=0.01, batch_size=128):
"""
Generate FGSM by running env.xadv.
Generate DeepFool by running env.xadv.
"""
print('\nMaking adversarials via FGSM')
print('\nMaking adversarials via DeepFool')

n_sample = X_data.shape[0]
n_batch = int((n_sample + batch_size - 1) / batch_size)
Expand Down
285 changes: 285 additions & 0 deletions example/deepfool_noise.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,285 @@
"""
Use DeepFool to craft adversarials on MNIST.
"""
import os

import numpy as np

import matplotlib
matplotlib.use('Agg') # noqa: E402
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec

import tensorflow as tf

from attacks import deepfool


os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'


img_size = 28
img_chan = 1
n_classes = 10


print('\nLoading MNIST')

mnist = tf.keras.datasets.mnist
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = np.reshape(X_train, [-1, img_size, img_size, img_chan])
X_train = X_train.astype(np.float32) / 255
X_test = np.reshape(X_test, [-1, img_size, img_size, img_chan])
X_test = X_test.astype(np.float32) / 255

to_categorical = tf.keras.utils.to_categorical
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)

print('\nSpliting data')

ind = np.random.permutation(X_train.shape[0])
X_train, y_train = X_train[ind], y_train[ind]

VALIDATION_SPLIT = 0.1
n = int(X_train.shape[0] * (1-VALIDATION_SPLIT))
X_valid = X_train[n:]
X_train = X_train[:n]
y_valid = y_train[n:]
y_train = y_train[:n]

print('\nConstruction graph')


def model(x, logits=False, training=False):
with tf.variable_scope('conv0'):
z = tf.layers.conv2d(x, filters=32, kernel_size=[3, 3],
padding='same', activation=tf.nn.relu)
z = tf.layers.max_pooling2d(z, pool_size=[2, 2], strides=2)

with tf.variable_scope('conv1'):
z = tf.layers.conv2d(z, filters=64, kernel_size=[3, 3],
padding='same', activation=tf.nn.relu)
z = tf.layers.max_pooling2d(z, pool_size=[2, 2], strides=2)

with tf.variable_scope('flatten'):
shape = z.get_shape().as_list()
z = tf.reshape(z, [-1, np.prod(shape[1:])])

with tf.variable_scope('mlp'):
z = tf.layers.dense(z, units=128, activation=tf.nn.relu)
z = tf.layers.dropout(z, rate=0.25, training=training)

logits_ = tf.layers.dense(z, units=10, name='logits')
y = tf.nn.softmax(logits_, name='ybar')

if logits:
return y, logits_
return y


class Dummy:
pass


env = Dummy()


with tf.variable_scope('model'):
env.x = tf.placeholder(tf.float32, (None, img_size, img_size, img_chan),
name='x')
env.y = tf.placeholder(tf.float32, (None, n_classes), name='y')
env.training = tf.placeholder_with_default(False, (), name='mode')

env.ybar, logits = model(env.x, logits=True, training=env.training)

with tf.variable_scope('acc'):
count = tf.equal(tf.argmax(env.y, axis=1), tf.argmax(env.ybar, axis=1))
env.acc = tf.reduce_mean(tf.cast(count, tf.float32), name='acc')

with tf.variable_scope('loss'):
xent = tf.nn.softmax_cross_entropy_with_logits(labels=env.y,
logits=logits)
env.loss = tf.reduce_mean(xent, name='loss')

with tf.variable_scope('train_op'):
optimizer = tf.train.AdamOptimizer()
env.train_op = optimizer.minimize(env.loss)

env.saver = tf.train.Saver()

with tf.variable_scope('model', reuse=True):
env.adv_epochs = tf.placeholder(tf.int32, (), name='adv_epochs')
env.noise = deepfool(model, env.x, epochs=env.adv_epochs, batch=True,
noise=True)

print('\nInitializing graph')

sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())


def evaluate(sess, env, X_data, y_data, batch_size=128):
"""
Evaluate TF model by running env.loss and env.acc.
"""
print('\nEvaluating')

n_sample = X_data.shape[0]
n_batch = int((n_sample+batch_size-1) / batch_size)
loss, acc = 0, 0

for batch in range(n_batch):
print(' batch {0}/{1}'.format(batch + 1, n_batch), end='\r')
start = batch * batch_size
end = min(n_sample, start + batch_size)
cnt = end - start
batch_loss, batch_acc = sess.run(
[env.loss, env.acc],
feed_dict={env.x: X_data[start:end],
env.y: y_data[start:end]})
loss += batch_loss * cnt
acc += batch_acc * cnt
loss /= n_sample
acc /= n_sample

print(' loss: {0:.4f} acc: {1:.4f}'.format(loss, acc))
return loss, acc


def train(sess, env, X_data, y_data, X_valid=None, y_valid=None, epochs=1,
load=False, shuffle=True, batch_size=128, name='model'):
"""
Train a TF model by running env.train_op.
"""
if load:
if not hasattr(env, 'saver'):
return print('\nError: cannot find saver op')
print('\nLoading saved model')
return env.saver.restore(sess, 'model/{}'.format(name))

print('\nTrain model')
n_sample = X_data.shape[0]
n_batch = int((n_sample+batch_size-1) / batch_size)
for epoch in range(epochs):
print('\nEpoch {0}/{1}'.format(epoch + 1, epochs))

if shuffle:
print('\nShuffling data')
ind = np.arange(n_sample)
np.random.shuffle(ind)
X_data = X_data[ind]
y_data = y_data[ind]

for batch in range(n_batch):
print(' batch {0}/{1}'.format(batch + 1, n_batch), end='\r')
start = batch * batch_size
end = min(n_sample, start + batch_size)
sess.run(env.train_op, feed_dict={env.x: X_data[start:end],
env.y: y_data[start:end],
env.training: True})
if X_valid is not None:
evaluate(sess, env, X_valid, y_valid)

if hasattr(env, 'saver'):
print('\n Saving model')
os.makedirs('model', exist_ok=True)
env.saver.save(sess, 'model/{}'.format(name))


def predict(sess, env, X_data, batch_size=128):
"""
Do inference by running env.ybar.
"""
print('\nPredicting')
n_classes = env.ybar.get_shape().as_list()[1]

n_sample = X_data.shape[0]
n_batch = int((n_sample+batch_size-1) / batch_size)
yval = np.empty((n_sample, n_classes))

for batch in range(n_batch):
print(' batch {0}/{1}'.format(batch + 1, n_batch), end='\r')
start = batch * batch_size
end = min(n_sample, start + batch_size)
y_batch = sess.run(env.ybar, feed_dict={env.x: X_data[start:end]})
yval[start:end] = y_batch
print()
return yval


def make_deepfool(sess, env, X_data, epochs=1, eps=0.01, batch_size=128):
"""
Generate DeepFool by running env.xadv.
"""
print('\nMaking adversarials via DeepFool')

n_sample = X_data.shape[0]
n_batch = int((n_sample + batch_size - 1) / batch_size)
X_noise = np.empty_like(X_data)

for batch in range(n_batch):
print(' batch {0}/{1}'.format(batch + 1, n_batch), end='\r')
start = batch * batch_size
end = min(n_sample, start + batch_size)
noise = sess.run(env.noise, feed_dict={env.x: X_data[start:end],
env.adv_epochs: epochs})
X_noise[start:end] = noise
print()

return X_noise


print('\nTraining')

train(sess, env, X_train, y_train, X_valid, y_valid, load=False, epochs=5,
name='mnist')

print('\nEvaluating on clean data')

evaluate(sess, env, X_test, y_test)

print('\nGenerating adversarial data')

X_noise = make_deepfool(sess, env, X_test, epochs=3)
X_adv = np.clip(X_test + 1.02*X_noise, 0, 1)
print(np.min(X_noise), np.max(X_noise))

print('\nEvaluating on adversarial data')

evaluate(sess, env, X_adv, y_test)

print('\nRandomly sample adversarial data from each category')

y1 = predict(sess, env, X_test)
y2 = predict(sess, env, X_adv)

z0 = np.argmax(y_test, axis=1)
z1 = np.argmax(y1, axis=1)
z2 = np.argmax(y2, axis=1)

print('\nPlotting results')
fig = plt.figure(figsize=(10, 2.2))
gs = gridspec.GridSpec(2, 10, wspace=0.05, hspace=0.05)

for i in range(10):
print('Target {0}'.format(i))
ind, = np.where(np.all([z0 == i, z1 == i, z2 != i], axis=0))
ind = np.random.choice(ind)
xcur = [X_test[ind], X_adv[ind]]
ycur = y2[ind]
zcur = z2[ind]

for j in range(2):
img = np.squeeze(xcur[j])
ax = fig.add_subplot(gs[j, i])
ax.imshow(img, cmap='gray', interpolation='none')
ax.set_xticks([])
ax.set_yticks([])
ax.set_xlabel('{0} ({1:.2f})'.format(zcur, ycur[zcur]), fontsize=12)

print('\nSaving figure')
gs.tight_layout(fig)
os.makedirs('img', exist_ok=True)
plt.savefig('img/deepfool_mnist.png')

0 comments on commit 734c5b7

Please sign in to comment.