Skip to content

Commit

Permalink
Added model generators
Browse files Browse the repository at this point in the history
  • Loading branch information
joernweissenborn committed Oct 16, 2021
1 parent aa23647 commit f6aca9a
Show file tree
Hide file tree
Showing 3 changed files with 188 additions and 0 deletions.
1 change: 1 addition & 0 deletions glotaran/project/generators/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
"""The glotaran generator package."""
147 changes: 147 additions & 0 deletions glotaran/project/generators/generator.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,147 @@
"""The glotaran generator module."""
from __future__ import annotations

from typing import Callable

from yaml import dump

from glotaran.model import Model


def _generate_decay_model(nr_compartments: int, irf: bool, decay_type: str) -> dict:
"""Generate a decay model dictionary.
Parameters
----------
nr_compartments : int
The number of compartments.
irf : bool
Whether to add a gaussian irf.
decay_type : str
The dype of the decay
Returns
-------
dict :
The generated model dictionary.
"""
compartments = [f"species_{i+1}" for i in range(nr_compartments)]
rates = [f"decay.species_{i+1}" for i in range(nr_compartments)]
model = {
"megacomplex": {
f"megacomplex_{decay_type}_decay": {
"type": f"decay-{decay_type}",
"compartments": compartments,
"rates": rates,
},
},
"dataset": {"dataset_1": {"megacomplex": [f"megacomplex_{decay_type}_decay"]}},
}
if irf:
model["dataset"]["dataset_1"]["irf"] = "gaussian_irf" # type:ignore[index]
model["irf"] = {
"gaussian_irf": {"type": "gaussian", "center": "irf.center", "width": "irf.width"},
}
return model


def generate_parallel_model(nr_compartments: int = 1, irf: bool = False) -> dict:
"""Generate a parallel decay model dictionary.
Parameters
----------
nr_compartments : int
The number of compartments.
irf : bool
Whether to add a gaussian irf.
Returns
-------
dict :
The generated model dictionary.
"""
return _generate_decay_model(nr_compartments, irf, "parallel")


def generate_sequential_model(nr_compartments: int = 1, irf: bool = False) -> dict:
"""Generate a sequential decay model dictionary.
Parameters
----------
nr_compartments : int
The number of compartments.
irf : bool
Whether to add a gaussian irf.
Returns
-------
dict :
The generated model dictionary.
"""
return _generate_decay_model(nr_compartments, irf, "sequential")


generators: dict[str, Callable] = {
"decay-parallel": generate_parallel_model,
"decay-sequential": generate_sequential_model,
}

available_generators: list[str] = list(generators.keys())


def generate_model(generator: str, **generator_arguments: dict) -> Model:
"""Generate a model.
Parameters
----------
generator : str
The generator to use.
generator_arguments : dict
Arguments for the generator.
Returns
-------
Model
The generated model
Raises
------
ValueError
Raised when an unknown generator is specified.
"""
if generator not in generators:
raise ValueError(
f"Unknown model generator '{generator}'. "
f"Known generators are: {list(generators.keys())}"
)
model = generators[generator](**generator_arguments)
return Model.from_dict(model)


def generate_model_yml(generator: str, **generator_arguments: dict) -> str:
"""Generate a model as yml string.
Parameters
----------
generator : str
The generator to use.
generator_arguments : dict
Arguments for the generator.
Returns
-------
str
The generated model yml string.
Raises
------
ValueError
Raised when an unknown generator is specified.
"""
if generator not in generators:
raise ValueError(
f"Unknown model generator '{generator}'. "
f"Known generators are: {list(generators.keys())}"
)
model = generators[generator](**generator_arguments)
return dump(model)
40 changes: 40 additions & 0 deletions glotaran/project/generators/test/test_genenerate_decay_model.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,40 @@
import pytest

from glotaran.project.generators.generator import generate_model


@pytest.mark.parametrize("megacomplex_type", ["parallel", "sequential"])
@pytest.mark.parametrize("irf", [True, False])
def test_generate_parallel_model(megacomplex_type: str, irf: bool):
nr_compartments = 5
model = generate_model(
f"decay-{megacomplex_type}",
**{"nr_compartments": nr_compartments, "irf": irf}, # type:ignore[arg-type]
)
print(model) # T001

assert (
f"megacomplex_{megacomplex_type}_decay" in model.megacomplex # type:ignore[attr-defined]
)
megacomplex = model.megacomplex[ # type:ignore[attr-defined]
f"megacomplex_{megacomplex_type}_decay"
]
assert megacomplex.type == f"decay-{megacomplex_type}"
assert megacomplex.compartments == [f"species_{i+1}" for i in range(nr_compartments)]
assert [r.full_label for r in megacomplex.rates] == [
f"decay.species_{i+1}" for i in range(nr_compartments)
]

assert "dataset_1" in model.dataset # type:ignore[attr-defined]
dataset = model.dataset["dataset_1"] # type:ignore[attr-defined]
assert dataset.megacomplex == [f"megacomplex_{megacomplex_type}_decay"]
if irf:
assert dataset.irf == "gaussian_irf"
assert "gaussian_irf" in model.irf # type:ignore[attr-defined]
assert (
model.irf["gaussian_irf"].center.full_label # type:ignore[attr-defined]
== "irf.center"
)
assert (
model.irf["gaussian_irf"].width.full_label == "irf.width" # type:ignore[attr-defined]
)

0 comments on commit f6aca9a

Please sign in to comment.