$ pip install requirements.txt
MMLU and GSM8k datasets can be downloaded from the link below and must be put in data/
folder.
https://drive.google.com/drive/folders/1DvZPrUSNoJoM-lFlF7dFWV_v6xwAyEWU?usp=sharing
SearchQA and XSUM datasets can be downloaded from Huggingface with the following code. The code will be called during execution.
dataset = load_dataset("EdinburghNLP/xsum", split=dataset_name, trust_remote_code=True)
dataset = load_dataset("search_qa", "train_test_val", split=dataset_name, trust_remote_code=True)
The base model outputs of these datasets are can be downloaded from the link below and must be put inside results/
https://drive.google.com/drive/folders/17_5JN5koFKsnyty9klNz1nBGYLKSE4tw?usp=sharing
To train LLM-TOPLA-Weighted on GSM8k or MMLU outputs of phi-2, Mixtral, and LLama
$ python topla_weighted.py --task_name gsm8k --model_ids 237
To train LLM-TOPLA-Summary on GSM8k or SearchQA
$ python topla_open_ended.py --task_name search_qa --model_ids 237
To train LLM-TOPLA-Summary on XSUM
$ python topla_summary.py --task_name xsum --model_ids 0123