-
Notifications
You must be signed in to change notification settings - Fork 94
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add new Intel CI support #736
Conversation
short comment: |
No it does not, double is properly ran for omp/reference. Note that this works when passing
|
@tcojean thanks for explanation. You are right, it only affect the DPCPP part. |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM in general. some concerns are in the comments
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM! The DPCPP_SINGLE_MODE integration is surprisingly smooth, I like it!
97aa8e9
to
ed50957
Compare
9ba4fd0
to
1813652
Compare
format! |
Codecov Report
@@ Coverage Diff @@
## develop #736 +/- ##
===========================================
- Coverage 92.78% 92.78% -0.01%
===========================================
Files 392 392
Lines 30514 30514
===========================================
- Hits 28312 28311 -1
- Misses 2202 2203 +1
Continue to review full report at Codecov.
|
692c75c
to
ff8c69f
Compare
This is now fully working and ready for review again. It also fixes a few bugs in the CMake setup. |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM
set(GINKGO_DPCPP_FLAGS ${GINKGO_DPCPP_FLAGS} PARENT_SCOPE) | ||
target_compile_options(ginkgo_dpcpp PRIVATE "${GINKGO_DPCPP_FLAGS}") | ||
target_compile_features(ginkgo_dpcpp PRIVATE cxx_std_17) | ||
target_link_options(ginkgo_dpcpp PRIVATE -fsycl-device-lib=all) | ||
target_link_options(ginkgo_dpcpp PRIVATE -fsycl-device-code-split=per_kernel) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Yes, It should need more changes. the current version is enough for our usage.
AOT may be helpful to detect error for those devices we do not have or eliminate the JIT time in the future
@@ -1,5 +1,5 @@ | |||
if (GINKGO_HIP_PLATFORM MATCHES "${HIP_PLATFORM_NVIDIA_REGEX}" | |||
AND CMAKE_CUDA_COMPILER_VERSION VERSION_LESS 9.2) | |||
AND GINKGO_BUILD_CUDA AND CMAKE_CUDA_COMPILER_VERSION VERSION_LESS 9.2) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
could we have method to check nvcc version from hip? it will skip the check when disabling the GINKGO_BUILD_CUDA
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
In that case, we already do that:
find_package(CUDA 9.2 REQUIRED)
// FIXME: This implementation is due to a DPC++ issue: | ||
// plain `sqrt` call evaluates to `std::sqrt` which fails on GPUs | ||
return cl::sycl::sqrt(squared_norm(x)); | ||
#else | ||
return sqrt(squared_norm(x)); |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I am not sure absolute array will call this or not due to namespace issue from dpcpp (sycl).
Also, if the sqrt is not the std::sqrt
from kernels::dpcpp
, it will give type error.
I write the above only as note because absolute_array test seems to be passed correctly
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Yes that's a good point, my expectation is now things are fixed and the sqrt
is actually the std::sqrt
we specified above. If you have any issue in practice it's good to keep in mind that this may have to change.
Co-authored-by: Yuhsiang Tsai <yhmtsai@gmail.com>
The recent logger merge is creating a lot of failures everywhere, I will try to fix this. |
+ Make HIP on CUDA platform not do the CMAKE_CUDA_COMPILER_VERSION check. + Fix an important bug affecting the CMAKE_REQUIRED_LIBRARIES management of build_type_helpers.cmake. Co-authored-by: Yuhsiang Tsai <yhmtsai@gmail.com> Co-authored-by: Tobias Ribizel <ribizel@kit.edu>
format! |
Co-authored-by: Terry Cojean <tcojean@users.noreply.github.com>
Kudos, SonarCloud Quality Gate passed! |
Ginkgo release 1.4.0 The Ginkgo team is proud to announce the new Ginkgo minor release 1.4.0. This release brings most of the Ginkgo functionality to the Intel DPC++ ecosystem which enables Intel-GPU and CPU execution. The only Ginkgo features which have not been ported yet are some preconditioners. Ginkgo's mixed-precision support is greatly enhanced thanks to: 1. The new Accessor concept, which allows writing kernels featuring on-the-fly memory compression, among other features. The accessor can be used as header-only, see the [accessor BLAS benchmarks repository](https://github.com/ginkgo-project/accessor-BLAS/tree/develop) as a usage example. 2. All LinOps now transparently support mixed-precision execution. By default, this is done through a temporary copy which may have a performance impact but already allows mixed-precision research. Native mixed-precision ELL kernels are implemented which do not see this cost. The accessor is also leveraged in a new CB-GMRES solver which allows for performance improvements by compressing the Krylov basis vectors. Many other features have been added to Ginkgo, such as reordering support, a new IDR solver, Incomplete Cholesky preconditioner, matrix assembly support (only CPU for now), machine topology information, and more! Supported systems and requirements: + For all platforms, cmake 3.13+ + C++14 compliant compiler + Linux and MacOS + gcc: 5.3+, 6.3+, 7.3+, all versions after 8.1+ + clang: 3.9+ + Intel compiler: 2018+ + Apple LLVM: 8.0+ + CUDA module: CUDA 9.0+ + HIP module: ROCm 3.5+ + DPC++ module: Intel OneAPI 2021.3. Set the CXX compiler to `dpcpp`. + Windows + MinGW and Cygwin: gcc 5.3+, 6.3+, 7.3+, all versions after 8.1+ + Microsoft Visual Studio: VS 2019 + CUDA module: CUDA 9.0+, Microsoft Visual Studio + OpenMP module: MinGW or Cygwin. Algorithm and important feature additions: + Add a new DPC++ Executor for SYCL execution and other base utilities [#648](#648), [#661](#661), [#757](#757), [#832](#832) + Port matrix formats, solvers and related kernels to DPC++. For some kernels, also make use of a shared kernel implementation for all executors (except Reference). [#710](#710), [#799](#799), [#779](#779), [#733](#733), [#844](#844), [#843](#843), [#789](#789), [#845](#845), [#849](#849), [#855](#855), [#856](#856) + Add accessors which allow multi-precision kernels, among other things. [#643](#643), [#708](#708) + Add support for mixed precision operations through apply in all LinOps. [#677](#677) + Add incomplete Cholesky factorizations and preconditioners as well as some improvements to ILU. [#672](#672), [#837](#837), [#846](#846) + Add an AMGX implementation and kernels on all devices but DPC++. [#528](#528), [#695](#695), [#860](#860) + Add a new mixed-precision capability solver, Compressed Basis GMRES (CB-GMRES). [#693](#693), [#763](#763) + Add the IDR(s) solver. [#620](#620) + Add a new fixed-size block CSR matrix format (for the Reference executor). [#671](#671), [#730](#730) + Add native mixed-precision support to the ELL format. [#717](#717), [#780](#780) + Add Reverse Cuthill-McKee reordering [#500](#500), [#649](#649) + Add matrix assembly support on CPUs. [#644](#644) + Extends ISAI from triangular to general and spd matrices. [#690](#690) Other additions: + Add the possibility to apply real matrices to complex vectors. [#655](#655), [#658](#658) + Add functions to compute the absolute of a matrix format. [#636](#636) + Add symmetric permutation and improve existing permutations. [#684](#684), [#657](#657), [#663](#663) + Add a MachineTopology class with HWLOC support [#554](#554), [#697](#697) + Add an implicit residual norm criterion. [#702](#702), [#818](#818), [#850](#850) + Row-major accessor is generalized to more than 2 dimensions and a new "block column-major" accessor has been added. [#707](#707) + Add an heat equation example. [#698](#698), [#706](#706) + Add ccache support in CMake and CI. [#725](#725), [#739](#739) + Allow tuning and benchmarking variables non intrusively. [#692](#692) + Add triangular solver benchmark [#664](#664) + Add benchmarks for BLAS operations [#772](#772), [#829](#829) + Add support for different precisions and consistent index types in benchmarks. [#675](#675), [#828](#828) + Add a Github bot system to facilitate development and PR management. [#667](#667), [#674](#674), [#689](#689), [#853](#853) + Add Intel (DPC++) CI support and enable CI on HPC systems. [#736](#736), [#751](#751), [#781](#781) + Add ssh debugging for Github Actions CI. [#749](#749) + Add pipeline segmentation for better CI speed. [#737](#737) Changes: + Add a Scalar Jacobi specialization and kernels. [#808](#808), [#834](#834), [#854](#854) + Add implicit residual log for solvers and benchmarks. [#714](#714) + Change handling of the conjugate in the dense dot product. [#755](#755) + Improved Dense stride handling. [#774](#774) + Multiple improvements to the OpenMP kernels performance, including COO, an exclusive prefix sum, and more. [#703](#703), [#765](#765), [#740](#740) + Allow specialization of submatrix and other dense creation functions in solvers. [#718](#718) + Improved Identity constructor and treatment of rectangular matrices. [#646](#646) + Allow CUDA/HIP executors to select allocation mode. [#758](#758) + Check if executors share the same memory. [#670](#670) + Improve test install and smoke testing support. [#721](#721) + Update the JOSS paper citation and add publications in the documentation. [#629](#629), [#724](#724) + Improve the version output. [#806](#806) + Add some utilities for dim and span. [#821](#821) + Improved solver and preconditioner benchmarks. [#660](#660) + Improve benchmark timing and output. [#669](#669), [#791](#791), [#801](#801), [#812](#812) Fixes: + Sorting fix for the Jacobi preconditioner. [#659](#659) + Also log the first residual norm in CGS [#735](#735) + Fix BiCG and HIP CSR to work with complex matrices. [#651](#651) + Fix Coo SpMV on strided vectors. [#807](#807) + Fix segfault of extract_diagonal, add short-and-fat test. [#769](#769) + Fix device_reset issue by moving counter/mutex to device. [#810](#810) + Fix `EnableLogging` superclass. [#841](#841) + Support ROCm 4.1.x and breaking HIP_PLATFORM changes. [#726](#726) + Decreased test size for a few device tests. [#742](#742) + Fix multiple issues with our CMake HIP and RPATH setup. [#712](#712), [#745](#745), [#709](#709) + Cleanup our CMake installation step. [#713](#713) + Various simplification and fixes to the Windows CMake setup. [#720](#720), [#785](#785) + Simplify third-party integration. [#786](#786) + Improve Ginkgo device arch flags management. [#696](#696) + Other fixes and improvements to the CMake setup. [#685](#685), [#792](#792), [#705](#705), [#836](#836) + Clarification of dense norm documentation [#784](#784) + Various development tools fixes and improvements [#738](#738), [#830](#830), [#840](#840) + Make multiple operators/constructors explicit. [#650](#650), [#761](#761) + Fix some issues, memory leaks and warnings found by MSVC. [#666](#666), [#731](#731) + Improved solver memory estimates and consistent iteration counts [#691](#691) + Various logger improvements and fixes [#728](#728), [#743](#743), [#754](#754) + Fix for ForwardIterator requirements in iterator_factory. [#665](#665) + Various benchmark fixes. [#647](#647), [#673](#673), [#722](#722) + Various CI fixes and improvements. [#642](#642), [#641](#641), [#795](#795), [#783](#783), [#793](#793), [#852](#852) Related PR: #857
Release 1.4.0 to master The Ginkgo team is proud to announce the new Ginkgo minor release 1.4.0. This release brings most of the Ginkgo functionality to the Intel DPC++ ecosystem which enables Intel-GPU and CPU execution. The only Ginkgo features which have not been ported yet are some preconditioners. Ginkgo's mixed-precision support is greatly enhanced thanks to: 1. The new Accessor concept, which allows writing kernels featuring on-the-fly memory compression, among other features. The accessor can be used as header-only, see the [accessor BLAS benchmarks repository](https://github.com/ginkgo-project/accessor-BLAS/tree/develop) as a usage example. 2. All LinOps now transparently support mixed-precision execution. By default, this is done through a temporary copy which may have a performance impact but already allows mixed-precision research. Native mixed-precision ELL kernels are implemented which do not see this cost. The accessor is also leveraged in a new CB-GMRES solver which allows for performance improvements by compressing the Krylov basis vectors. Many other features have been added to Ginkgo, such as reordering support, a new IDR solver, Incomplete Cholesky preconditioner, matrix assembly support (only CPU for now), machine topology information, and more! Supported systems and requirements: + For all platforms, cmake 3.13+ + C++14 compliant compiler + Linux and MacOS + gcc: 5.3+, 6.3+, 7.3+, all versions after 8.1+ + clang: 3.9+ + Intel compiler: 2018+ + Apple LLVM: 8.0+ + CUDA module: CUDA 9.0+ + HIP module: ROCm 3.5+ + DPC++ module: Intel OneAPI 2021.3. Set the CXX compiler to `dpcpp`. + Windows + MinGW and Cygwin: gcc 5.3+, 6.3+, 7.3+, all versions after 8.1+ + Microsoft Visual Studio: VS 2019 + CUDA module: CUDA 9.0+, Microsoft Visual Studio + OpenMP module: MinGW or Cygwin. Algorithm and important feature additions: + Add a new DPC++ Executor for SYCL execution and other base utilities [#648](#648), [#661](#661), [#757](#757), [#832](#832) + Port matrix formats, solvers and related kernels to DPC++. For some kernels, also make use of a shared kernel implementation for all executors (except Reference). [#710](#710), [#799](#799), [#779](#779), [#733](#733), [#844](#844), [#843](#843), [#789](#789), [#845](#845), [#849](#849), [#855](#855), [#856](#856) + Add accessors which allow multi-precision kernels, among other things. [#643](#643), [#708](#708) + Add support for mixed precision operations through apply in all LinOps. [#677](#677) + Add incomplete Cholesky factorizations and preconditioners as well as some improvements to ILU. [#672](#672), [#837](#837), [#846](#846) + Add an AMGX implementation and kernels on all devices but DPC++. [#528](#528), [#695](#695), [#860](#860) + Add a new mixed-precision capability solver, Compressed Basis GMRES (CB-GMRES). [#693](#693), [#763](#763) + Add the IDR(s) solver. [#620](#620) + Add a new fixed-size block CSR matrix format (for the Reference executor). [#671](#671), [#730](#730) + Add native mixed-precision support to the ELL format. [#717](#717), [#780](#780) + Add Reverse Cuthill-McKee reordering [#500](#500), [#649](#649) + Add matrix assembly support on CPUs. [#644](#644) + Extends ISAI from triangular to general and spd matrices. [#690](#690) Other additions: + Add the possibility to apply real matrices to complex vectors. [#655](#655), [#658](#658) + Add functions to compute the absolute of a matrix format. [#636](#636) + Add symmetric permutation and improve existing permutations. [#684](#684), [#657](#657), [#663](#663) + Add a MachineTopology class with HWLOC support [#554](#554), [#697](#697) + Add an implicit residual norm criterion. [#702](#702), [#818](#818), [#850](#850) + Row-major accessor is generalized to more than 2 dimensions and a new "block column-major" accessor has been added. [#707](#707) + Add an heat equation example. [#698](#698), [#706](#706) + Add ccache support in CMake and CI. [#725](#725), [#739](#739) + Allow tuning and benchmarking variables non intrusively. [#692](#692) + Add triangular solver benchmark [#664](#664) + Add benchmarks for BLAS operations [#772](#772), [#829](#829) + Add support for different precisions and consistent index types in benchmarks. [#675](#675), [#828](#828) + Add a Github bot system to facilitate development and PR management. [#667](#667), [#674](#674), [#689](#689), [#853](#853) + Add Intel (DPC++) CI support and enable CI on HPC systems. [#736](#736), [#751](#751), [#781](#781) + Add ssh debugging for Github Actions CI. [#749](#749) + Add pipeline segmentation for better CI speed. [#737](#737) Changes: + Add a Scalar Jacobi specialization and kernels. [#808](#808), [#834](#834), [#854](#854) + Add implicit residual log for solvers and benchmarks. [#714](#714) + Change handling of the conjugate in the dense dot product. [#755](#755) + Improved Dense stride handling. [#774](#774) + Multiple improvements to the OpenMP kernels performance, including COO, an exclusive prefix sum, and more. [#703](#703), [#765](#765), [#740](#740) + Allow specialization of submatrix and other dense creation functions in solvers. [#718](#718) + Improved Identity constructor and treatment of rectangular matrices. [#646](#646) + Allow CUDA/HIP executors to select allocation mode. [#758](#758) + Check if executors share the same memory. [#670](#670) + Improve test install and smoke testing support. [#721](#721) + Update the JOSS paper citation and add publications in the documentation. [#629](#629), [#724](#724) + Improve the version output. [#806](#806) + Add some utilities for dim and span. [#821](#821) + Improved solver and preconditioner benchmarks. [#660](#660) + Improve benchmark timing and output. [#669](#669), [#791](#791), [#801](#801), [#812](#812) Fixes: + Sorting fix for the Jacobi preconditioner. [#659](#659) + Also log the first residual norm in CGS [#735](#735) + Fix BiCG and HIP CSR to work with complex matrices. [#651](#651) + Fix Coo SpMV on strided vectors. [#807](#807) + Fix segfault of extract_diagonal, add short-and-fat test. [#769](#769) + Fix device_reset issue by moving counter/mutex to device. [#810](#810) + Fix `EnableLogging` superclass. [#841](#841) + Support ROCm 4.1.x and breaking HIP_PLATFORM changes. [#726](#726) + Decreased test size for a few device tests. [#742](#742) + Fix multiple issues with our CMake HIP and RPATH setup. [#712](#712), [#745](#745), [#709](#709) + Cleanup our CMake installation step. [#713](#713) + Various simplification and fixes to the Windows CMake setup. [#720](#720), [#785](#785) + Simplify third-party integration. [#786](#786) + Improve Ginkgo device arch flags management. [#696](#696) + Other fixes and improvements to the CMake setup. [#685](#685), [#792](#792), [#705](#705), [#836](#836) + Clarification of dense norm documentation [#784](#784) + Various development tools fixes and improvements [#738](#738), [#830](#830), [#840](#840) + Make multiple operators/constructors explicit. [#650](#650), [#761](#761) + Fix some issues, memory leaks and warnings found by MSVC. [#666](#666), [#731](#731) + Improved solver memory estimates and consistent iteration counts [#691](#691) + Various logger improvements and fixes [#728](#728), [#743](#743), [#754](#754) + Fix for ForwardIterator requirements in iterator_factory. [#665](#665) + Various benchmark fixes. [#647](#647), [#673](#673), [#722](#722) + Various CI fixes and improvements. [#642](#642), [#641](#641), [#795](#795), [#783](#783), [#793](#793), [#852](#852) Related PR: #866
Make DPC++ tests work with the new system.
The new Intel CI system adds two new checks: the integrated and discrete GPU.
Some changes to the DPC++ tests are required: