This is a set of baselines used for evaluating our reranking methods for the paper: Anonymous Authors. Post Processing Recommender Systems with Knowledge Graphs for Recency, Popularity, and Diversity of Explanation
In order to perfome our studies we readapt the datasets and performe sligth adjustments in the original repository that was producted by other authors paper:
Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu and Tat-Seng Chua (2019). KGAT: Knowledge Graph Attention Network for Recommendation. Paper in ACM DL or Paper in arXiv. In KDD'19, Anchorage, Alaska, USA, August 4-8, 2019.
Note: When the anonimity constraint will decay, this code will be reuploaded as a fork of the original repository in order to give the deserved credit to the original authors.
The considered baselines included two traditional matrix factorization models (FM, NFM, BPR), three explainable recommendation models based on regularization terms (CFKG, CKE, KGAT), and one explainable recommendation model based on explanation paths (PGPR) [Framework repository].
The code has been tested running under Python 3.9.0 The required packages are as follows:
- tensorflow == 1.12.0
- numpy == 1.15.4
- scipy == 1.1.0
- sklearn == 0.20.0
To demonstrate the reproducibility of the best performance reported in our paper and faciliate researchers to track whether the model status is consistent with ours, we provide the best parameter settings, and provide the outputs of our trainings.
The instruction of commands has been clearly stated in the codes (see the parser function in Model/utility/parser.py).
- FM
--model_type fm --alg_type bi --dataset ml1m --regs [1e-5,1e-5] --layer_size [64,32,16] --embed_size 64 --lr 0.0001 --epoch 500 --verbose 50 --save_flag -1 --pretrain 0 --report 0 --batch_size 1024 --node_dropout [0.1] --mess_dropout [0.1,0.1,0.1] --use_att False --use_kge False --Ks [10]
- NFM
--model_type nfm --alg_type bi --dataset ml1m --regs [1e-5,1e-5] --layer_size [64,32,16] --embed_size 64 --lr 0.0001 --epoch 500 --verbose 50 --save_flag -1 --pretrain 0 --report 0 --batch_size 1024 --node_dropout [0.1] --mess_dropout [0.1,0.1,0.1] --use_att False --use_kge False --Ks [10]
- CKE
--model_type cke --alg_type bi --dataset ml1m --regs [1e-5,1e-5] --layer_size [64,32,16] --embed_size 64 --lr 0.0001 --epoch 500 --verbose 50 --save_flag -1 --pretrain 0 --report 0 --batch_size 1024 --node_dropout [0.1] --mess_dropout [0.1,0.1,0.1] --use_att False --use_kge False --Ks [10]
- CFKG
--model_type cfkg --alg_type bi --dataset ml1m --regs [1e-5,1e-5] --layer_size [64,32,16] --embed_size 64 --lr 0.0001 --epoch 500 --verbose 50 --save_flag -1 --pretrain 0 --report 0 --batch_size 1024 --node_dropout [0.1] --mess_dropout [0.1,0.1,0.1] --use_att False --use_kge False --Ks [10]
- KGAT
--model_type kgat --alg_type bi --dataset ml1m --regs [1e-5,1e-5] --layer_size [64,32,16] --embed_size 64 --lr 0.0001 --epoch 500 --verbose 50 --save_flag -2 --pretrain 0 --report 0 --batch_size 1024 --node_dropout [0.1] --mess_dropout [0.1,0.1,0.1] --use_att True --use_kge True --Ks [10]
- FM
--model_type fm --alg_type bi --dataset last-fm --regs [1e-5,1e-5] --layer_size [64,32,16] --embed_size 64 --lr 0.0001 --epoch 500 --verbose 50 --save_flag -1 --pretrain 0 --report 0 --batch_size 1024 --node_dropout [0.1] --mess_dropout [0.1,0.1,0.1] --use_att False --use_kge False --Ks [10]
- NFM
--model_type nfm --alg_type bi --dataset last-fm --regs [1e-5,1e-5] --layer_size [64,32,16] --embed_size 64 --lr 0.0001 --epoch 500 --verbose 50 --save_flag -1 --pretrain 0 --report 0 --batch_size 1024 --node_dropout [0.1] --mess_dropout [0.1,0.1,0.1] --use_att False --use_kge False --Ks [10]
- CKE
--model_type cke --alg_type bi --dataset last-fm --regs [1e-5,1e-5] --layer_size [64,32,16] --embed_size 64 --lr 0.0001 --epoch 500 --verbose 50 --save_flag -1 --pretrain 0 --report 0 --batch_size 1024 --node_dropout [0.1] --mess_dropout [0.1,0.1,0.1] --use_att False --use_kge False --Ks [10]
- CFKG
--model_type cfkg --alg_type bi --dataset last-fm --regs [1e-5,1e-5] --layer_size [64,32,16] --embed_size 64 --lr 0.0001 --epoch 500 --verbose 50 --save_flag -1 --pretrain 0 --report 0 --batch_size 1024 --node_dropout [0.1] --mess_dropout [0.1,0.1,0.1] --use_att False --use_kge False --Ks [10]
- KGAT
--model_type kgat --alg_type bi --dataset last-fm --regs [1e-5,1e-5] --layer_size [64,32,16] --embed_size 64 --lr 0.0001 --epoch 500 --verbose 50 --save_flag -2 --pretrain 0 --report 0 --batch_size 1024 --node_dropout [0.1] --mess_dropout [0.1,0.1,0.1] --use_att True --use_kge True --Ks [10]
Some important arguments:
-
model_type
- It specifies the type of model.
- Here we provide six options, including KGAT and five baseline models:
kgat
(by default), proposed in KGAT: Knowledge Graph Attention Network for Recommendation, KDD2019. Usage:--model_type kgat
.bprmf
, proposed in BPR: Bayesian Personalized Ranking from Implicit Feedback, UAI2009. Such model only uses user-item interactions. Usage:--model_type bprmf
.fm
, proposed in Fast context-aware recommendations with factorization machines, SIGIR2011. Usage:--model_type fm
.nfm
, proposed in Neural Factorization Machines for Sparse Predictive Analytics, SIGIR2017. Usage:--model_type nfm
.cke
, proposed in Collaborative Knowledge Base Embedding for Recommender Systems, KDD2016. Usage:--model_type cke
.cfkg
, proposed in Learning Heterogeneous Knowledge Base Embeddings for Explainable Recommendation, Algorithm2018. Usage:--model_type cfkg
.
- You can find other baselines, such as RippleNet, MCRec, and GC-MC, in Github.
-
alg_type
- It specifies the type of graph convolutional layer.
- Here we provide three options:
kgat
(by default), proposed in KGAT: Knowledge Graph Attention Network for Recommendation, KDD2019. Usage:--alg_type kgat
.gcn
, proposed in Semi-Supervised Classification with Graph Convolutional Networks, ICLR2018. Usage:--alg_type gcn
.graphsage
, propsed in Inductive Representation Learning on Large Graphs., NeurIPS2017. Usage:--alg_type graphsage
.
-
adj_type
- It specifies the type of laplacian matrix where each entry defines the decay factor between two connected nodes.
- Here we provide two options:
si
(by default), where each decay factor between two connected nodes (say, x->y) is set as 1/(out degree of x), while each node is also assigned with 1 for self-connections. Usage:--adj_type si
.bi
, where each decay factor between two connected nodes (say, x->y) is set as 1/sqrt((out degree of x)*(out degree of y)). Usage:--adj_type bi
.
-
mess_dropout
- It indicates the message dropout ratio, which randomly drops out the outgoing messages. Usage
--mess_dropout [0.1,0.1,0.1]
.
- It indicates the message dropout ratio, which randomly drops out the outgoing messages. Usage
-
pretrain
- Please note that, as million-scale knowledge graphs are involved in the recommendation task, it is strongly suggested to use the trained user and item embeddings of BPR-MF to initialize the user and item embeddings of all models (including all baselines and our KGAT) by setting the hyperparameter
pretrain
as-1
. - If you would like to train all models from scratch, please set the hyperparameter
pretrain
as0
. In this case, please set the number of epoch and the criteria of early stopping larger.
- Please note that, as million-scale knowledge graphs are involved in the recommendation task, it is strongly suggested to use the trained user and item embeddings of BPR-MF to initialize the user and item embeddings of all models (including all baselines and our KGAT) by setting the hyperparameter
The original repository provided three processed datasets: Amazon-book, Last-FM, and Yelp2018.
In addition to these dataset we provide two more datasets with the associated KG Completion with sensible attributes: ML1M that provides gender, age and occupation and LAST-FM that provides gender, age and country
-
You can find the full version of recommendation datasets via Amazon-book, Last-FM, and Yelp2018.
-
We mapped the datasets with the external knowledge for ML1M and LAST-FM respectively from Cao, Yixin and Wang, Xiang and He, Xiangnan and Hu, Zikun and Chua Tat-seng. Unifying Knowledge Graph Learning and Recommendation Towards a Better Understanding of User Preference in WWW'19 and Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu and Tat-Seng Chua (2019). KGAT: Knowledge Graph Attention Network for Recommendation..
-
Sensible Attributes availables
ML1M | Last-FM | Amazon-book | Last-FM(KGAT) | Yelp2018 | |
---|---|---|---|---|---|
Gender | Yes | Yes | No | No | No |
Age | Yes | Yes | No | No | No |
Country | No | Yes | No | No | No |
Occupation | Yes | No | No | No | No |
- Our Datasets with Sensible Attributes
ML1M | Last-FM | ||
---|---|---|---|
User-Item Interaction | #Users | 6,040 | 15,773 |
#Items | 3,226 | 47,981 | |
#Interactions | 1,000,209 | 3,955,598 | |
Knowledge Graph | #Entities | 16,899 | 114,255 |
#Relations | 10 | 9 | |
#Triplets | 156,261 | 464,567 |
- Datasets from original implementation
Amazon-book | Last-FM | Yelp2018 | ||
---|---|---|---|---|
User-Item Interaction | #Users | 70,679 | 23,566 | 45,919 |
#Items | 24,915 | 48,123 | 45,538 | |
#Interactions | 847,733 | 3,034,796 | 1,185,068 | |
Knowledge Graph | #Entities | 88,572 | 58,266 | 90,961 |
#Relations | 39 | 9 | 42 | |
#Triplets | 2,557,746 | 464,567 | 1,853,704 |
-
train.txt
- Train file.
- Each line is a user with her/his positive interactions with items: (
userID
anda list of itemID
).
-
test.txt
- Test file (positive instances).
- Each line is a user with her/his positive interactions with items: (
userID
anda list of itemID
). - Note that here we treat all unobserved interactions as the negative instances when reporting performance.
-
user_list.txt
- User file.
- Each line is a triplet (
org_id
,remap_id
) for one user, whereorg_id
andremap_id
represent the ID of such user in the original and our datasets, respectively.
-
item_list.txt
- Item file.
- Each line is a triplet (
org_id
,remap_id
,freebase_id
) for one item, whereorg_id
,remap_id
, andfreebase_id
represent the ID of such item in the original, our datasets, and freebase, respectively.
-
entity_list.txt
- Entity file.
- Each line is a triplet (
freebase_id
,remap_id
) for one entity in knowledge graph, wherefreebase_id
andremap_id
represent the ID of such entity in freebase and our datasets, respectively.
-
relation_list.txt
- Relation file.
- Each line is a triplet (
freebase_id
,remap_id
) for one relation in knowledge graph, wherefreebase_id
andremap_id
represent the ID of such relation in freebase and our datasets, respectively.
Nobody guarantees the correctness of the data, its suitability for any particular purpose, or the validity of results based on the use of the data set. The data set may be used for any research purposes under the following conditions:
- The user must acknowledge the use of the data set in publications resulting from the use of the data set.
- The user may not redistribute the data without separate permission.
- The user may not try to deanonymise the data.
- The user may not use this information for any commercial or revenue-bearing purposes without first obtaining permission from us.
If you want to use our codes and datasets in your research, please cite:
@inproceedings{KGAT19,
author = {Xiang Wang and
Xiangnan He and
Yixin Cao and
Meng Liu and
Tat{-}Seng Chua},
title = {{KGAT:} Knowledge Graph Attention Network for Recommendation},
booktitle = {{KDD}},
pages = {950--958},
year = {2019}
}
Any scientific publications that use our datasets should cite the following paper as the reference:
@inproceedings{KGAT19,
author = {Xiang Wang and
Xiangnan He and
Yixin Cao and
Meng Liu and
Tat-Seng Chua},
title = {KGAT: Knowledge Graph Attention Network for Recommendation},
booktitle = {{KDD}},
year = {2019}
}