Skip to content

giacoballoccu/Knowlede-Aware-Recommender-Systems-Baselines

Folders and files

NameName
Last commit message
Last commit date

Latest commit

672c877 · Nov 19, 2021

History

2 Commits
Nov 19, 2021
Nov 19, 2021
Nov 19, 2021

Repository files navigation

KA-RC-Baselines

This is a set of baselines used for evaluating our reranking methods for the paper: Anonymous Authors. Post Processing Recommender Systems with Knowledge Graphs for Recency, Popularity, and Diversity of Explanation

In order to perfome our studies we readapt the datasets and performe sligth adjustments in the original repository that was producted by other authors paper:

Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu and Tat-Seng Chua (2019). KGAT: Knowledge Graph Attention Network for Recommendation. Paper in ACM DL or Paper in arXiv. In KDD'19, Anchorage, Alaska, USA, August 4-8, 2019.

Note: When the anonimity constraint will decay, this code will be reuploaded as a fork of the original repository in order to give the deserved credit to the original authors.

Introduction

The considered baselines included two traditional matrix factorization models (FM, NFM, BPR), three explainable recommendation models based on regularization terms (CFKG, CKE, KGAT), and one explainable recommendation model based on explanation paths (PGPR) [Framework repository].

Environment Requirement

The code has been tested running under Python 3.9.0 The required packages are as follows:

  • tensorflow == 1.12.0
  • numpy == 1.15.4
  • scipy == 1.1.0
  • sklearn == 0.20.0

Reproducibility & Example to Run the Codes

To demonstrate the reproducibility of the best performance reported in our paper and faciliate researchers to track whether the model status is consistent with ours, we provide the best parameter settings, and provide the outputs of our trainings.

The instruction of commands has been clearly stated in the codes (see the parser function in Model/utility/parser.py).

ML1M dataset

  • FM
--model_type fm --alg_type bi --dataset ml1m --regs [1e-5,1e-5] --layer_size [64,32,16] --embed_size 64 --lr 0.0001 --epoch 500 --verbose 50 --save_flag -1 --pretrain 0 --report 0 --batch_size 1024 --node_dropout [0.1] --mess_dropout [0.1,0.1,0.1] --use_att False --use_kge False --Ks [10]
  • NFM
--model_type nfm --alg_type bi --dataset ml1m --regs [1e-5,1e-5] --layer_size [64,32,16] --embed_size 64 --lr 0.0001 --epoch 500 --verbose 50 --save_flag -1 --pretrain 0 --report 0 --batch_size 1024 --node_dropout [0.1] --mess_dropout [0.1,0.1,0.1] --use_att False --use_kge False --Ks [10]
  • CKE
--model_type cke --alg_type bi --dataset ml1m --regs [1e-5,1e-5] --layer_size [64,32,16] --embed_size 64 --lr 0.0001 --epoch 500 --verbose 50 --save_flag -1 --pretrain 0 --report 0 --batch_size 1024 --node_dropout [0.1] --mess_dropout [0.1,0.1,0.1] --use_att False --use_kge False --Ks [10]
  • CFKG
--model_type cfkg --alg_type bi --dataset ml1m --regs [1e-5,1e-5] --layer_size [64,32,16] --embed_size 64 --lr 0.0001 --epoch 500 --verbose 50 --save_flag -1 --pretrain 0 --report 0 --batch_size 1024 --node_dropout [0.1] --mess_dropout [0.1,0.1,0.1] --use_att False --use_kge False --Ks [10]
  • KGAT
--model_type kgat --alg_type bi --dataset ml1m --regs [1e-5,1e-5] --layer_size [64,32,16] --embed_size 64 --lr 0.0001 --epoch 500 --verbose 50 --save_flag -2 --pretrain 0 --report 0 --batch_size 1024 --node_dropout [0.1] --mess_dropout [0.1,0.1,0.1] --use_att True --use_kge True --Ks [10]

LAST-FM dataset

  • FM
--model_type fm --alg_type bi --dataset last-fm --regs [1e-5,1e-5] --layer_size [64,32,16] --embed_size 64 --lr 0.0001 --epoch 500 --verbose 50 --save_flag -1 --pretrain 0 --report 0 --batch_size 1024 --node_dropout [0.1] --mess_dropout [0.1,0.1,0.1] --use_att False --use_kge False --Ks [10]
  • NFM
--model_type nfm --alg_type bi --dataset last-fm --regs [1e-5,1e-5] --layer_size [64,32,16] --embed_size 64 --lr 0.0001 --epoch 500 --verbose 50 --save_flag -1 --pretrain 0 --report 0 --batch_size 1024 --node_dropout [0.1] --mess_dropout [0.1,0.1,0.1] --use_att False --use_kge False --Ks [10]
  • CKE
--model_type cke --alg_type bi --dataset last-fm --regs [1e-5,1e-5] --layer_size [64,32,16] --embed_size 64 --lr 0.0001 --epoch 500 --verbose 50 --save_flag -1 --pretrain 0 --report 0 --batch_size 1024 --node_dropout [0.1] --mess_dropout [0.1,0.1,0.1] --use_att False --use_kge False --Ks [10]
  • CFKG
--model_type cfkg --alg_type bi --dataset last-fm --regs [1e-5,1e-5] --layer_size [64,32,16] --embed_size 64 --lr 0.0001 --epoch 500 --verbose 50 --save_flag -1 --pretrain 0 --report 0 --batch_size 1024 --node_dropout [0.1] --mess_dropout [0.1,0.1,0.1] --use_att False --use_kge False --Ks [10]
  • KGAT
--model_type kgat --alg_type bi --dataset last-fm --regs [1e-5,1e-5] --layer_size [64,32,16] --embed_size 64 --lr 0.0001 --epoch 500 --verbose 50 --save_flag -2 --pretrain 0 --report 0 --batch_size 1024 --node_dropout [0.1] --mess_dropout [0.1,0.1,0.1] --use_att True --use_kge True --Ks [10]

Some important arguments:

Datasets

The original repository provided three processed datasets: Amazon-book, Last-FM, and Yelp2018.

In addition to these dataset we provide two more datasets with the associated KG Completion with sensible attributes: ML1M that provides gender, age and occupation and LAST-FM that provides gender, age and country

ML1M Last-FM Amazon-book Last-FM(KGAT) Yelp2018
Gender Yes Yes No No No
Age Yes Yes No No No
Country No Yes No No No
Occupation Yes No No No No
  • Our Datasets with Sensible Attributes
ML1M Last-FM
User-Item Interaction #Users 6,040 15,773
#Items 3,226 47,981
#Interactions 1,000,209 3,955,598
Knowledge Graph #Entities 16,899 114,255
#Relations 10 9
#Triplets 156,261 464,567
  • Datasets from original implementation
Amazon-book Last-FM Yelp2018
User-Item Interaction #Users 70,679 23,566 45,919
#Items 24,915 48,123 45,538
#Interactions 847,733 3,034,796 1,185,068
Knowledge Graph #Entities 88,572 58,266 90,961
#Relations 39 9 42
#Triplets 2,557,746 464,567 1,853,704
  • train.txt

    • Train file.
    • Each line is a user with her/his positive interactions with items: (userID and a list of itemID).
  • test.txt

    • Test file (positive instances).
    • Each line is a user with her/his positive interactions with items: (userID and a list of itemID).
    • Note that here we treat all unobserved interactions as the negative instances when reporting performance.
  • user_list.txt

    • User file.
    • Each line is a triplet (org_id, remap_id) for one user, where org_id and remap_id represent the ID of such user in the original and our datasets, respectively.
  • item_list.txt

    • Item file.
    • Each line is a triplet (org_id, remap_id, freebase_id) for one item, where org_id, remap_id, and freebase_id represent the ID of such item in the original, our datasets, and freebase, respectively.
  • entity_list.txt

    • Entity file.
    • Each line is a triplet (freebase_id, remap_id) for one entity in knowledge graph, where freebase_id and remap_id represent the ID of such entity in freebase and our datasets, respectively.
  • relation_list.txt

    • Relation file.
    • Each line is a triplet (freebase_id, remap_id) for one relation in knowledge graph, where freebase_id and remap_id represent the ID of such relation in freebase and our datasets, respectively.

Nobody guarantees the correctness of the data, its suitability for any particular purpose, or the validity of results based on the use of the data set. The data set may be used for any research purposes under the following conditions:

  • The user must acknowledge the use of the data set in publications resulting from the use of the data set.
  • The user may not redistribute the data without separate permission.
  • The user may not try to deanonymise the data.
  • The user may not use this information for any commercial or revenue-bearing purposes without first obtaining permission from us.

Citation

If you want to use our codes and datasets in your research, please cite:

@inproceedings{KGAT19,
  author    = {Xiang Wang and
               Xiangnan He and
               Yixin Cao and
               Meng Liu and
               Tat{-}Seng Chua},
  title     = {{KGAT:} Knowledge Graph Attention Network for Recommendation},
  booktitle = {{KDD}},
  pages     = {950--958},
  year      = {2019}
}

Acknowledgement

Any scientific publications that use our datasets should cite the following paper as the reference:

@inproceedings{KGAT19,
  author    = {Xiang Wang and
               Xiangnan He and
               Yixin Cao and
               Meng Liu and
               Tat-Seng Chua},
  title     = {KGAT: Knowledge Graph Attention Network for Recommendation},
  booktitle = {{KDD}},
  year      = {2019}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages