Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

perf: AVX2/AVX routines for tall and skinny matmul - up to 15X speedup #996

Closed
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion Makefile
Original file line number Diff line number Diff line change
Expand Up @@ -210,7 +210,7 @@ libllama.so: llama.o ggml.o $(OBJS)
# Tests
#

benchmark-matmult: examples/benchmark/benchmark-matmult.cpp ggml.o $(OBJS)
benchmark-matmult: examples/benchmark/benchmark-matmult.cpp ggml.o llama.o common.o $(OBJS)
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
./$@

Expand Down
31 changes: 30 additions & 1 deletion examples/benchmark/benchmark-matmult.cpp
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
#include <locale.h>
#include "ggml.h"
#include "llama.h"
#include <assert.h>
#include <math.h>
#include <cstring>
Expand Down Expand Up @@ -161,12 +162,40 @@ int main(int argc, char ** argv) {
struct ggml_cgraph gf = ggml_build_forward(m11xm2);

gf.n_threads=benchmark_params.n_threads;
printf("cgraph->n_threads=%i\n",gf.n_threads);
fprintf(stderr, "system_info: n_threads = %d | %s\n",
benchmark_params.n_threads, llama_print_system_info());

TENSOR_DUMP(m11);
TENSOR_DUMP(m2);

ggml_graph_compute(ctx, &gf);
{
const int dimx = sizex;
const int dimy = sizey;
const int dimz = sizez;
long long int flops_per_dot_product = dimy + dimy;
long long int flops_per_matrix = flops_per_dot_product * dimx * dimz; ;
printf("Matrix Multiplication of (%i,%i,%i) x (%i,%i,%i) - about %6.2f gFLOPS\n\n", sizex, sizey, 1, sizex, sizez, 1, 1.0f*flops_per_matrix / 1000 / 1000 / 1000);

printf("Iteration;NThreads; SizeX; SizeY; SizeZ; Required_FLOPS; Elapsed_u_Seconds; FLOPS_per_u_Second\n");
printf("==============================================================================================\n");

for (int i=0;i<benchmark_params.n_iterations ;i++) {

long long int start = ggml_time_us();
//printf("Running ggml_graph_compute\n");
ggml_graph_compute(ctx, &gf);
long long int stop = ggml_time_us();
long long int usec = stop-start;
float sec = usec/1000000;
float flops_per_usec = (1.0f*flops_per_matrix)/usec;
printf("%9i;%8i;%6i;%6i;%6i;%15lli;%18lli;%19.2f\n",
i,
gf.n_threads,
sizex, sizey, sizez, flops_per_matrix,
usec,flops_per_usec);
}
}

TENSOR_DUMP(gf.nodes[0]);

Expand Down
112 changes: 111 additions & 1 deletion ggml.c
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,10 @@
#include <float.h>
#include <limits.h>

#if defined(__AVX2__)
#include <stdalign.h>
#endif

// if C99 - static_assert is noop
// ref: https://stackoverflow.com/a/53923785/4039976
#ifndef static_assert
Expand Down Expand Up @@ -95,7 +99,7 @@ typedef void* thread_ret_t;
#define static_assert(cond, msg) _Static_assert(cond, msg)
#endif

/*#define GGML_PERF*/
// #define GGML_PERF
#define GGML_DEBUG 0
#define GGML_GELU_FP16
#define GGML_SILU_FP16
Expand Down Expand Up @@ -492,6 +496,83 @@ static inline int hsum_i32_4(const __m128i a) {
return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
}

// AVX routine provided by GH user jon-chuang
#if (__AVX2__ || __AVX512F__) && __FMA__
// Given A = K X M, B = K X N, compute one row of C = A^TB
void ggml_mul_row_f32_tall_skinny(const float * A, const float * B, float * C, int M, int N, int K) {
alignas(32) float res_vec[8];
for (int j = 0; j < N; j += 8) { // Process 8 elements of C's row at a time - 256 / size_of(float)
__m256 c_vec = _mm256_setzero_ps(); // Initialize the result vector to all zeros
for (int k = 0; k < K; ++k) {
__m256 a = _mm256_broadcast_ss(&A[k * M]); // Broadcast the k-th element of the row of A^T
__m256 b_vec = _mm256_load_ps(&B[j + k * N]); // Load the j/8-th segment of the k-th row of B^T (corresponding to the k-th column of B)
c_vec = _mm256_fmadd_ps(a, b_vec, c_vec); // FMA: c_vec += a * b_vec
}

// Store the result in the corresponding row of C
_mm256_store_ps((float *) &res_vec, c_vec);

for (int k = 0; k < 8; ++k) {
C[j+k] = res_vec[k];
}
}

// Handle the remainder
const int64_t remainder = N & (8l - 1);
if (remainder > 0) {
int j = N - remainder;
__m256i mask_vec = _mm256_set1_epi32(0xffffffff << (8l - remainder));

__m256 c_vec = _mm256_setzero_ps(); // Initialize the result vector to all zeros

for (int k = 0; k < K; ++k) {
__m256 a = _mm256_broadcast_ss(&A[k * M]); // Broadcast the k-th element of the row of A^T
__m256 b_vec = _mm256_maskload_ps(&B[j + k * N], mask_vec); // Load the j/8-th segment of the k-th row of B^T (corresponding to the k-th column of B)
c_vec = _mm256_fmadd_ps(a, b_vec, c_vec); // FMA: c_vec += a * b_vec
}

// Store the result in the corresponding offset of C
_mm256_maskstore_ps(&C[j], mask_vec, c_vec);
}
}
#elif __AVX__ && __FMA__
// Given A = K X M, B = K X N, compute one row of C = A^TB
void ggml_mul_row_f32_tall_skinny(const float * A, const float * B, float * C, int M, int N, int K) {
for (int j = 0; j < N; j += 4) { // Process 4 elements of C's row at a time - 128 / size_of(float)
__m128 c_vec = _mm_setzero_ps(); // Initialize the result vector to all zeros

for (int k = 0; k < K; ++k) {
__m128 a = _mm_broadcast_ss(&A[k * M]); // Broadcast the k-th element of the row of A^T
__m128 b_vec = _mm_load_ps(&B[j + k * N]); // Load the j/4-th segment of the k-th row of B^T (corresponding to the k-th column of B)
c_vec = _mm_fmadd_ps(a, b_vec, c_vec); // FMA: c_vec += a * b_vec
}

// Store the result in the corresponding row of C
_mm_store_ps(&C[j], c_vec);
}

// Handle the remainder
const int64_t remainder = N & (4l - 1);
if (remainder > 0) {
int j = N - remainder;
__m128i mask_vec = _mm_set1_epi32(0xffffffff << (4l - remainder));

__m128 c_vec = _mm_setzero_ps(); // Initialize the result vector to all zeros

for (int k = 0; k < K; ++k) {
__m128 a = _mm_broadcast_ss(&A[k * M]); // Broadcast the k-th element of the row of A^T
__m128 b_vec = _mm_maskload_ps(&B[j + k * N], mask_vec); // Load the j/4-th segment of the k-th row of B^T (corresponding to the k-th column of B)
c_vec = _mm_fmadd_ps(a, b_vec, c_vec); // FMA: c_vec += a * b_vec
}

// Store the result in the corresponding offset of C
_mm_maskstore_ps(&C[j], mask_vec, c_vec);
}
}
#endif

// AVX routines provided by GH user Const-me
// ref: https://github.com/ggerganov/ggml/pull/27#issuecomment-1464934600
#if __AVX2__ || __AVX512F__
// spread 32 bits to 32 bytes { 0x00, 0xFF }
static inline __m256i bytes_from_bits_32(const uint8_t * x) {
Expand Down Expand Up @@ -8042,6 +8123,35 @@ static void ggml_compute_forward_mul_mat_f32(
assert(ne2 == ne02);
assert(ne3 == ne03);

#if (__AVX512F__ || __AVX2__ || __AVX__) && __FMA__
// Handle tall and skinny matrices
if ((ggml_cpu_has_avx2() && ne00 <= 48) || ne00 <= 32) {
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
// total rows in src0
const int nr = ne01*ne02*ne03;

// rows per thread
const int dr = (nr + nth - 1)/nth;

// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);

// fprintf(stderr, "TS_MUL_MAT: %i %i %i, ir0: %d, ir1: %d, ID: %d\n", ne00, ne11, ne01, ir0, ir1, thrd_current());
for (int i = ir0; i < ir1; ++i) {
// M = ne01, N = ne11, K = ne00
ggml_mul_row_f32_tall_skinny(
(float *) src0->data + i,
(float *) src1->data,
(float *) dst->data + i*ne01,
ne01, ne11, ne00);
}
return;
}
#endif

// nb01 >= nb00 - src0 is not transposed
// compute by src0 rows

Expand Down