Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ggml : group all experts in a single ggml_mul_mat_id #6505

Merged
merged 22 commits into from
Apr 18, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
57 changes: 36 additions & 21 deletions examples/imatrix/imatrix.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -44,7 +44,7 @@ class IMatrixCollector {
std::mutex m_mutex;
int m_last_call = 0;
std::vector<float> m_src1_data;
std::vector<int> m_ids; // the expert ids from ggml_mul_mat_id
std::vector<char> m_ids; // the expert ids from ggml_mul_mat_id
//
void save_imatrix(const char * file_name) const;
void keep_imatrix(int ncall) const;
Expand Down Expand Up @@ -81,6 +81,7 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
if (ask) {
if (t->op == GGML_OP_MUL_MAT_ID) return true; // collect all indirect matrix multiplications
if (t->op != GGML_OP_MUL_MAT) return false;
// why are small batches ignored (<16 tokens)?
if (src1->ne[1] < 16 || src1->type != GGML_TYPE_F32) return false;
if (!(wname.substr(0, 4) == "blk." || (m_params.collect_output_weight && wname == "output.weight"))) return false;
return true;
Expand All @@ -101,14 +102,19 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
// this has been adapted to the new format of storing merged experts in a single 3d tensor
// ref: https://github.com/ggerganov/llama.cpp/pull/6387
if (t->op == GGML_OP_MUL_MAT_ID) {
const int idx = ((int32_t *) t->op_params)[0];
// ids -> [n_experts_used, n_tokens]
// src1 -> [cols, n_expert_used, n_tokens]
const ggml_tensor * ids = t->src[2];
const int n_as = src0->ne[2];
const int n_ids = ids->ne[0];

// the top-k selected expert ids are stored in the ids tensor
// for simplicity, always copy ids to host, because it is small
GGML_ASSERT(ids->ne[1] == src1->ne[1]);
m_ids.resize(ggml_nbytes(ids)/sizeof(int));
// take into account that ids is not contiguous!

GGML_ASSERT(ids->ne[1] == src1->ne[2]);

m_ids.resize(ggml_nbytes(ids));
ggml_backend_tensor_get(ids, m_ids.data(), 0, ggml_nbytes(ids));

auto & e = m_stats[wname];
Expand All @@ -118,26 +124,35 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
// using the following line, we can correct for that if needed by replacing the line above with:
//if (idx == t->src[0]->ne[0] - 1) ++e.ncall;

if (e.values.empty()) {
e.values.resize(src1->ne[0]*n_as, 0);
}
else if (e.values.size() != (size_t)src1->ne[0]*n_as) {
fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", wname.c_str(), (int)e.values.size(), (int)src1->ne[0]*n_as);
exit(1); //GGML_ASSERT(false);
}
if (m_params.verbosity > 1) {
printf("%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[2], (int)src1->type);
}
// loop over all possible experts, regardless if they are used or not in the batch
for (int ex = 0; ex < n_as; ++ex) {
size_t e_start = ex*src1->ne[0];
if (e.values.empty()) {
e.values.resize(src1->ne[0]*n_as, 0);
}
else if (e.values.size() != (size_t)src1->ne[0]*n_as) {
fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", wname.c_str(), (int)e.values.size(), (int)src1->ne[0]*n_as);
exit(1); //GGML_ASSERT(false);
}
if (m_params.verbosity > 1) {
printf("%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->type);
}
for (int row = 0; row < (int)src1->ne[1]; ++row) {
const int excur = m_ids[row*n_as + idx];
GGML_ASSERT(excur >= 0 && excur < n_as); // sanity check
if (excur != ex) continue;
const float * x = data + row * src1->ne[0];
for (int j = 0; j < (int)src1->ne[0]; ++j) {
e.values[e_start + j] += x[j]*x[j];

for (int idx = 0; idx < n_ids; ++idx) {
for (int row = 0; row < (int)src1->ne[2]; ++row) {
const int excur = *(const int32_t *) (m_ids.data() + row*ids->nb[1] + idx*ids->nb[0]);

GGML_ASSERT(excur >= 0 && excur < n_as); // sanity check

if (excur != ex) continue;

const int64_t i11 = idx % src1->ne[1];
const int64_t i12 = row;
const float * x = (const float *)((const char *)data + i11*src1->nb[1] + i12*src1->nb[2]);

for (int j = 0; j < (int)src1->ne[0]; ++j) {
e.values[e_start + j] += x[j]*x[j];
}
}
}
if (e.ncall > m_last_call) {
Expand Down
179 changes: 134 additions & 45 deletions ggml-cuda.cu
Original file line number Diff line number Diff line change
Expand Up @@ -1231,7 +1231,7 @@ static void ggml_cuda_op_mul_mat_cublas(

if (compute_capability >= CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) {
// convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32
ggml_cuda_pool_alloc<half> src0_as_f16(ctx.pool());
ggml_cuda_pool_alloc<half> src0_as_f16(ctx.pool(id));
if (src0->type != GGML_TYPE_F16) {
const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src0->type);
GGML_ASSERT(to_fp16_cuda != nullptr);
Expand All @@ -1241,7 +1241,7 @@ static void ggml_cuda_op_mul_mat_cublas(
}
const half * src0_ptr = src0->type == GGML_TYPE_F16 ? (const half *) src0_dd_i : src0_as_f16.get();

ggml_cuda_pool_alloc<half> src1_as_f16(ctx.pool());
ggml_cuda_pool_alloc<half> src1_as_f16(ctx.pool(id));
if (src1->type != GGML_TYPE_F16) {
const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
GGML_ASSERT(to_fp16_cuda != nullptr);
Expand All @@ -1250,7 +1250,7 @@ static void ggml_cuda_op_mul_mat_cublas(
to_fp16_cuda(src1_ddf_i, src1_as_f16.get(), ne, stream);
}
const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddf_i : src1_as_f16.get();
ggml_cuda_pool_alloc<half> dst_f16(ctx.pool(), row_diff*src1_ncols);
ggml_cuda_pool_alloc<half> dst_f16(ctx.pool(id), row_diff*src1_ncols);

const half alpha_f16 = 1.0f;
const half beta_f16 = 0.0f;
Expand Down Expand Up @@ -1960,20 +1960,73 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor
}
}

struct mmid_row_mapping {
int32_t i1;
int32_t i2;
};

static __global__ void k_copy_src1_to_contiguous(const char * __restrict__ src1_original, char * __restrict__ src1_contiguous,
int * __restrict__ cur_src1_row, mmid_row_mapping * __restrict__ row_mapping,
const char * __restrict ids, int64_t i02, size_t ids_nb1, size_t ids_nb0,
int64_t ne11, int64_t ne10,
size_t nb11, size_t nb12) {
int32_t iid1 = blockIdx.x;
int32_t id = blockIdx.y;

const int32_t row_id_i = *(const int32_t *) (ids + iid1*ids_nb1 + id*ids_nb0);

if (row_id_i != i02) {
return;
}

const int64_t i11 = id % ne11;
const int64_t i12 = iid1;

__shared__ int src1_row;
if (threadIdx.x == 0) {
src1_row = atomicAdd(cur_src1_row, 1);
ggerganov marked this conversation as resolved.
Show resolved Hide resolved
row_mapping[src1_row] = {id, iid1};
}
__syncthreads();

const float * src1_row_original = (const float *)(src1_original + i11*nb11 + i12*nb12);
float * src1_row_contiguous = (float *)(src1_contiguous + src1_row*nb11);

for (int i = threadIdx.x; i < ne10; i += blockDim.x) {
src1_row_contiguous[i] = src1_row_original[i];
slaren marked this conversation as resolved.
Show resolved Hide resolved
}
}

static __global__ void k_copy_dst_from_contiguous(char * __restrict__ dst_original, const char * __restrict__ dst_contiguous,
const mmid_row_mapping * __restrict__ row_mapping,
int64_t ne0,
size_t nb1, size_t nb2) {
int32_t i = blockIdx.x;

const int32_t i1 = row_mapping[i].i1;
const int32_t i2 = row_mapping[i].i2;

const float * dst_row_contiguous = (const float *)(dst_contiguous + i*nb1);
float * dst_row_original = (float *)(dst_original + i1*nb1 + i2*nb2);

for (int j = threadIdx.x; j < ne0; j += blockDim.x) {
dst_row_original[j] = dst_row_contiguous[j];
slaren marked this conversation as resolved.
Show resolved Hide resolved
}
}

static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
const ggml_tensor * ids = dst->src[2];

GGML_TENSOR_BINARY_OP_LOCALS

GGML_ASSERT(!ggml_backend_buffer_is_cuda_split(src0->buffer) && "mul_mat_id does not support split buffers");

cudaStream_t stream = ctx.stream();

const size_t nb11 = src1->nb[1];
const size_t nb1 = dst->nb[1];

const int32_t id = ((int32_t *) dst->op_params)[0];
const int32_t n_as = src0->ne[2];
const int64_t n_as = ne02;
const int64_t n_ids = ids->ne[0];

std::vector<char> ids_host(ggml_nbytes(ids));
const char * ids_dev = (const char *) ids->data;
Expand All @@ -1982,27 +2035,47 @@ static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor *

ggml_tensor src0_row = *src0;
ggml_tensor src1_row = *src1;
ggml_tensor dst_row = *dst;
ggml_tensor dst_row = *dst;

char * src0_original = (char *) src0->data;
char * src1_original = (char *) src1->data;
char * dst_original = (char *) dst->data;

src0_row.ne[2] = 1;
src0_row.ne[3] = 1;
src0_row.nb[3] = src0->nb[2];
src0_row.nb[3] = nb02;

if (src1->ne[1] == 1) {
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
const int32_t row_id = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
src1_row.ne[1] = 1;
src1_row.ne[2] = 1;
src1_row.ne[3] = 1;
src1_row.nb[2] = nb11;
src1_row.nb[3] = nb11;

GGML_ASSERT(row_id >= 0 && row_id < n_as);
dst_row.ne[1] = 1;
dst_row.ne[2] = 1;
dst_row.ne[3] = 1;
dst_row.nb[2] = nb1;
dst_row.nb[3] = nb1;

src0_row.data = src0_original + row_id*src0->nb[2];
src1_row.data = src1_original + i01*src1->nb[1];
dst_row.data = dst_original + i01*dst->nb[1];
if (ne12 == 1) {
for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
for (int64_t id = 0; id < n_ids; id++) {
const int32_t i02 = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);

ggml_cuda_mul_mat(ctx, &src0_row, &src1_row, &dst_row);
GGML_ASSERT(i02 >= 0 && i02 < n_as);

const int64_t i11 = id % ne11;
const int64_t i12 = iid1;

const int64_t i1 = id;
const int64_t i2 = i12;

src0_row.data = src0_original + i02*nb02;
src1_row.data = src1_original + i11*nb11 + i12*nb12;
dst_row.data = dst_original + i1*nb1 + i2*nb2;

ggml_cuda_mul_mat(ctx, &src0_row, &src1_row, &dst_row);
}
}
} else {
ggml_cuda_pool_alloc<char> src1_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(src1));
Expand All @@ -2011,54 +2084,69 @@ static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor *
src1_row.data = src1_contiguous.get();
dst_row.data = dst_contiguous.get();

for (int32_t row_id = 0; row_id < n_as; ++row_id) {
for (int64_t i02 = 0; i02 < n_as; i02++) {
int64_t num_src1_rows = 0;
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
const int32_t row_id_i = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);

if (row_id_i != row_id) {
continue;
}
for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
for (int64_t id = 0; id < n_ids; id++) {
const int32_t row_id_i = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);

GGML_ASSERT(row_id >= 0 && row_id < n_as);
GGML_ASSERT(row_id_i >= 0 && row_id_i < n_as);

CUDA_CHECK(cudaMemcpyAsync(src1_contiguous.get() + num_src1_rows*nb11, src1_original + i01*nb11,
nb11, cudaMemcpyDeviceToDevice, stream));
num_src1_rows++;
if (row_id_i != i02) {
continue;
}

num_src1_rows++;
}
}

if (num_src1_rows == 0) {
continue;
}

src0_row.data = src0_original + row_id*src0->nb[2];
ggml_cuda_pool_alloc<int> dev_cur_src1_row(ctx.pool(), 1);
ggml_cuda_pool_alloc<mmid_row_mapping> dev_row_mapping(ctx.pool(), num_src1_rows);
CUDA_CHECK(cudaMemsetAsync(dev_cur_src1_row.get(), 0, sizeof(int), stream));

src1_row.ne[1] = num_src1_rows;
dst_row.ne[1] = num_src1_rows;
{
dim3 block_dims(std::min((unsigned int)ne10, 768u));
dim3 grid_dims(ids->ne[1], n_ids);
k_copy_src1_to_contiguous<<<grid_dims, block_dims, 0, stream>>>(
src1_original, src1_contiguous.get(),
dev_cur_src1_row.get(), dev_row_mapping.get(),
ids_dev, i02, ids->nb[1], ids->nb[0],
ne11, ne10,
nb11, nb12);
CUDA_CHECK(cudaGetLastError());
}

src0_row.data = src0_original + i02*nb02;

GGML_ASSERT(nb11 == sizeof(float)*ne10);
GGML_ASSERT(nb1 == sizeof(float)*ne0);

src1_row.ne[1] = num_src1_rows;
src1_row.nb[1] = nb11;
src1_row.nb[2] = num_src1_rows*nb11;
src1_row.nb[3] = num_src1_rows*nb11;

dst_row.ne[1] = num_src1_rows;
dst_row.nb[1] = nb1;
dst_row.nb[2] = num_src1_rows*nb1;
dst_row.nb[3] = num_src1_rows*nb1;

ggml_cuda_mul_mat(ctx, &src0_row, &src1_row, &dst_row);

num_src1_rows = 0;
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
const int32_t row_id_i = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);

if (row_id_i != row_id) {
continue;
}

GGML_ASSERT(row_id >= 0 && row_id < n_as);

CUDA_CHECK(cudaMemcpyAsync(dst_original + i01*nb1, dst_contiguous.get() + num_src1_rows*nb1,
nb1, cudaMemcpyDeviceToDevice, stream));
num_src1_rows++;
{
dim3 block_dims(std::min((unsigned int)ne0, 768u));
dim3 grid_dims(num_src1_rows);
k_copy_dst_from_contiguous<<<grid_dims, block_dims, 0, stream>>>(
dst_original, dst_contiguous.get(),
dev_row_mapping.get(),
ne0,
nb1, nb2);
CUDA_CHECK(cudaGetLastError());
}
}
}
Expand Down Expand Up @@ -2487,7 +2575,8 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
GGML_CALL static bool ggml_backend_cuda_offload_op(ggml_backend_t backend, const ggml_tensor * op) {
const int min_batch_size = 32;

return op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS;
return (op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS) ||
(op->ne[2] >= min_batch_size && op->op == GGML_OP_MUL_MAT_ID);

GGML_UNUSED(backend);
}
Expand Down
Loading
Loading