Skip to content

Commit

Permalink
llamafile : improve moe prompt eval speed on cpu
Browse files Browse the repository at this point in the history
This change introduces a llamafile_mixmul() API that allows tinyBLAS to
speed up "Mixture of Expert" models. On my Threadripper, Mixtral's 8x7b
F16 weights now process prompts 2x faster. I'm also seeing a 60 percent
improvement with Mixtral 8x22b Q4_0. The same applies to Q8_0, which is
also supported by tinyBLAS. MoE models spend the majority of their time
inside MUL_MAT_ID rather than MUL_MAT, which is why llamafile_sgemm was
not able to help them before. llamafile_mixmul works by decomposing the
mixmul operation into sgemm calls.
  • Loading branch information
jart committed May 12, 2024
1 parent 7bd4ffb commit e1c02a7
Show file tree
Hide file tree
Showing 4 changed files with 731 additions and 216 deletions.
6 changes: 3 additions & 3 deletions common/common.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -74,7 +74,7 @@
using json = nlohmann::ordered_json;

int32_t get_num_physical_cores() {
#ifdef __linux__
#if defined(__linux__) || defined(__COSMOPOLITAN__)
// enumerate the set of thread siblings, num entries is num cores
std::unordered_set<std::string> siblings;
for (uint32_t cpu=0; cpu < UINT32_MAX; ++cpu) {
Expand Down Expand Up @@ -109,7 +109,7 @@ int32_t get_num_physical_cores() {
return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4;
}

#if defined(__x86_64__) && defined(__linux__) && !defined(__ANDROID__)
#if defined(__x86_64__) && (defined(__linux__) || defined(__COSMOPOLITAN__)) && !defined(__ANDROID__)
#include <pthread.h>

static void cpuid(unsigned leaf, unsigned subleaf,
Expand Down Expand Up @@ -163,7 +163,7 @@ static int count_math_cpus(int cpu_count) {
* Returns number of CPUs on system that are useful for math.
*/
int get_math_cpu_count() {
#if defined(__x86_64__) && defined(__linux__) && !defined(__ANDROID__)
#if defined(__x86_64__) && (defined(__linux__) || defined(__COSMOPOLITAN__)) && !defined(__ANDROID__)
int cpu_count = sysconf(_SC_NPROCESSORS_ONLN);
if (cpu_count < 1) {
return get_num_physical_cores();
Expand Down
14 changes: 13 additions & 1 deletion ggml.c
Original file line number Diff line number Diff line change
Expand Up @@ -12068,11 +12068,16 @@ static void ggml_compute_forward_mul_mat_id(
const struct ggml_tensor * src1 = dst->src[1];
const struct ggml_tensor * ids = dst->src[2];

GGML_TENSOR_BINARY_OP_LOCALS
#if GGML_USE_LLAMAFILE
if (llamafile_mixmul(params, src0, src1, ids, dst))
return;
#endif

const int ith = params->ith;
const int nth = params->nth;

GGML_TENSOR_BINARY_OP_LOCALS

const enum ggml_type type = src0->type;

const bool src1_cont = ggml_is_contiguous(src1);
Expand Down Expand Up @@ -19659,6 +19664,9 @@ struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threa
cur = 0;
const struct ggml_tensor * src0 = node->src[0];
const struct ggml_tensor * src1 = node->src[1];
#if GGML_USE_LLAMAFILE
const struct ggml_tensor * src2 = node->src[2];
#endif
const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
if (src1->type != vec_dot_type) {
cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
Expand All @@ -19667,6 +19675,10 @@ struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threa
cur += GGML_PAD(cur, sizeof(int64_t)); // align
cur += n_as * sizeof(int64_t); // matrix_row_counts
cur += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows
#if GGML_USE_LLAMAFILE
size_t cur2 = llamafile_mixmul_needs(src0, src1, src2);
cur = cur > cur2 ? cur : cur2;
#endif
} break;
case GGML_OP_OUT_PROD:
{
Expand Down
Loading

0 comments on commit e1c02a7

Please sign in to comment.