Skip to content

simplifies fine-tuning and inference for 60+ open-source LLMs through a single API

License

Notifications You must be signed in to change notification settings

getflexai/flex_ai

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

38 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

flexai logo

Lightweight Library to Finetune and Deploy All LLMs, no CUDA, no NVIDIA drivers, no OOMs, Multi-GPUs setup, No Prompt Templates !

FlexAI

A platform that simplifies fine-tuning and inference for 60+ open-source LLMs through a single API interface. FlexAI enables serverless deployment, reducing setup time by up to 70%. Finally , You dont have to handle installations, OOMs, GPUs setup, prompt templates, integrating new models, wait too long to download huge models, etc.

⭐ Key Features

  • Serverless fine-tuning and inference
  • Live time and cost estimations
  • Checkpoint management
  • LoRA and multi-LoRA support
  • Target inference validations
  • OpenAI-compatible Endpoints API
  • Interactive Playground

✨ Get Started

  1. Sign up at app.getflex.ai, New accounts come with 5$ for free,to get started :)
  2. Get your API key from Settings -> API Keys
  3. Start with our documentation
  4. Everything can be done without any code from our dashboard - FlexAI Dashboard

πŸ“š Full Google Colab Example

One Notebook to fine tune all LLMs

πŸ’Ύ Installation

You dont need to install, no CUDA, no NVIDIA drivers, no setup. Our lightweight library is only an API wrapper to FlexAI serverless GPUs. You can work from any operating system, including Windows, MacOS, and Linux.

pip install flex_ai openai

πŸ¦₯ Quick Start

from flex_ai import FlexAI

# Initialize client with your API key
client = FlexAI(api_key="your-api-key")

# Create dataset - for all datasets [here](https://docs.getflex.ai/quickstart#upload-your-first-dataset)
dataset = client.create_dataset("Dataset Name", "train.jsonl", "eval.jsonl")

# Start fine-tuning -
task = client.create_finetune(
    name="My Task",
    dataset_id=dataset["id"],
    # You can choose from 60+ models, Full list [here](https://docs.getflex.ai/core-concepts/models)
    model="meta-llama/Llama-3.2-3B-Instruct",
    n_epochs=10,
    train_with_lora=True,
    lora_config={
        "lora_r": 64,
        "lora_alpha": 8,
        "lora_dropout": 0.1
    }
)

# Create endpoint
endpoint = client.create_multi_lora_endpoint(
    name="My Endpoint",
    lora_checkpoints=[{"id": checkpoint_id, "name": "step_1"}],
    compute="A100-40GB"
)

πŸ₯‡ Using Your Fine-tuned Model

from openai import OpenAI

client = OpenAI(
    api_key="your-api-key",
    base_url=f"{endpoint_url}/v1"
)

completion = client.completions.create(
    model="your-model",
    prompt="Your prompt",
    max_tokens=60
)

πŸ”— Links and Resources

Type Links
πŸ“š Documentation & Wiki Read Our Docs
Β  Twitter (aka X) Follow us on X
πŸ’Ύ Installation getflex/README.md
🌐 Supported Models FlexAI Models

πŸ¦₯ Full Example

from flex_ai import FlexAI
from openai import OpenAI
import time

# Initialize the Flex AI client
client = FlexAI(api_key="your_api_key_here")

# Create dataset - for all datasets [here](https://docs.getflex.ai/quickstart#upload-your-first-dataset)
dataset = client.create_dataset(
    "API Dataset New",
    "instruction/train.jsonl",
    "instruction/eval.jsonl"
)

# Start a fine-tuning task
task = client.create_finetune(
    name="My Task New",
    dataset_id=dataset["id"],
    model="meta-llama/Llama-3.2-1B-Instruct",
    n_epochs=5,
    train_with_lora=True,
    lora_config={
        "lora_r": 64,
        "lora_alpha": 8,
        "lora_dropout": 0.1
    },
    n_checkpoints_and_evaluations_per_epoch=1,
    batch_size=4,
    learning_rate=0.0001,
    save_only_best_checkpoint=True
)

# Wait for training completion
client.wait_for_task_completion(task_id=task["id"])

# Wait for last checkpoint to be uploaded
while True:
    checkpoints = client.get_task_checkpoints(task_id=task["id"])
    if checkpoints and checkpoints[-1]["stage"] == "FINISHED":
        last_checkpoint = checkpoints[-1]
        checkpoint_list = [{
            "id": last_checkpoint["id"],
            "name": "step_" + str(last_checkpoint["step"])
        }]
        break
    time.sleep(10)  # Wait 10 seconds before checking again

# Create endpoint
endpoint_id = client.create_multi_lora_endpoint(
    name="My Endpoint New",
    lora_checkpoints=checkpoints_list,
    compute="A100-40GB"
)
endpoint = client.wait_for_endpoint_ready(endpoint_id=endpoint_id)

# Use the model
openai_client = OpenAI(
    api_key="your_api_key_here",
    base_url=f"{endpoint['url']}/v1"
)
completion = openai_client.completions.create(
    model="meta-llama/Llama-3.2-1B-Instruct",
    prompt="Translate the following English text to French",
    max_tokens=60
)

print(completion.choices[0].text)

LLM Models Available for Fine-tuning

This table provides an overview of the Large Language Models (LLMs) available for fine-tuning, ordered approximately from most well-known to least familiar. It lists key details for each model, including its name, family, parameter count, context length, and additional features.

Model Name Family Parameters (B) Context Length vLLM Support LoRA Support
Nvidia-Llama-3.1-Nemotron-70B-Instruct-HF llama3.1 70 131,072 Yes Yes
Meta-Llama-3.2-3B-Instruct llama3.2 3 131,072 Yes Yes
Meta-Llama-3.2-1B-Instruct llama3.2 1 131,072 Yes Yes
Mistral-Small-Instruct-2409 mistral 7.2 128,000 Yes Yes
Ministral-8B-Instruct-2410 mistral 8 128,000 Yes Yes
Mathstral-7B-v0.1 mistral 7 32,000 Yes Yes
Qwen2.5-Coder-7B-Instruct qwen2.5 7 32,768 Yes Yes
Aya-Expanse-32b aya 32 128,000 Yes No
Aya-Expanse-8b aya 8 8,000 Yes No
Nemotron-Mini-4B-Instruct nemotron 4 4,096 Yes No
Gemma-2-2b-it gemma2 2 8,192 Yes Yes
Meta-Llama-3.1-70B-Instruct llama3.1 70 131,072 Yes Yes
Meta-Llama-3.1-70B-Instruct llama3.1 70 131,072 Yes Yes
Meta-Llama-3.1-70B llama3.1 70 131,072 Yes Yes
Meta-Llama-3.1-8B-Instruct llama3.1 8 131,072 Yes Yes
Meta-Llama-3.1-8B llama3.1 8 131,072 Yes Yes
Meta-Llama-3-70B-Instruct llama3 70 8,192 Yes Yes
Meta-Llama-3-70B llama3 70 8,192 Yes Yes
Meta-Llama-3-8B-Instruct llama3 8 8,192 Yes Yes
Meta-Llama-3-8B llama3 8 8,192 Yes Yes
Mixtral-8x7B-Instruct-v0.1 mixtral 46.7 32,768 Yes Yes
Mistral-7B-Instruct-v0.3 mistral 7.2 32,768 Yes Yes
Mistral-Nemo-Instruct-2407 mistral 12.2 128,000 No No
Mistral-Nemo-Base-2407 mistral 12.2 128,000 No No
Gemma-2-27b-it gemma2 27 8,192 Yes Yes
Gemma-2-27b gemma2 27 8,192 Yes Yes
Gemma-2-9b-it gemma2 9 8,192 Yes Yes
Gemma-2-9b gemma2 9 8,192 Yes Yes
Phi-3-medium-128k-instruct phi3 14 128,000 Yes No
Phi-3-medium-4k-instruct phi3 14 4,000 Yes No
Phi-3-small-128k-instruct phi3 7.4 128,000 Yes No
Phi-3-small-8k-instruct phi3 7.4 8,000 Yes No
Phi-3-mini-128k-instruct phi3 3.8 128,000 Yes No
Phi-3-mini-4k-instruct phi3 3.8 4,096 Yes No
Qwen2-72B-Instruct qwen2 72 32,768 Yes Yes
Qwen2-72B qwen2 72 32,768 Yes Yes
Qwen2-57B-A14B-Instruct qwen2 57 32,768 Yes Yes
Qwen2-57B-A14B qwen2 57 32,768 Yes Yes
Qwen2-7B-Instruct qwen2 7 32,768 Yes Yes
Qwen2-7B qwen2 7 32,768 Yes Yes
Qwen2-1.5B-Instruct qwen2 1.5 32,768 Yes Yes
Qwen2-1.5B qwen2 1.5 32,768 Yes Yes
Qwen2-0.5B-Instruct qwen2 0.5 32,768 Yes Yes
Qwen2-0.5B qwen2 0.5 32,768 Yes Yes
TinyLlama_v1.1 tinyllama 1.1 2,048 No No
DeepSeek-Coder-V2-Lite-Base deepseek-coder-v2 16 163,840 No No
InternLM2_5-7B-Chat internlm2.5 7.74 1,000,000 Yes No
InternLM2_5-7B internlm2.5 7.74 1,000,000 Yes No
Jamba-v0.1 jamba 51.6 256,000 Yes Yes
Yi-1.5-34B-Chat yi-1.5 34.4 4,000 Yes Yes
Yi-1.5-34B yi-1.5 34.4 4,000 Yes Yes
Yi-1.5-34B-32K yi-1.5 34.4 32,000 Yes Yes
Yi-1.5-34B-Chat-16K yi-1.5 34.4 16,000 Yes Yes
Yi-1.5-9B-Chat yi-1.5 8.83 4,000 Yes Yes
Yi-1.5-9B yi-1.5 8.83 4,000 Yes Yes
Yi-1.5-9B-32K yi-1.5 8.83 32,000 Yes Yes
Yi-1.5-9B-Chat-16K yi-1.5 8.83 16,000 Yes Yes
Yi-1.5-6B-Chat yi-1.5 6 4,000 Yes Yes
Yi-1.5-6B yi-1.5 6 4,000 Yes Yes
c4ai-command-r-v01 command-r 35 131,072 Yes No

Notes:

  • "vLLM Support" indicates whether the model is compatible with the vLLM (very Large Language Model) inference framework.
  • "LoRA Support" indicates if the vLLM support inference the model with multiple LorA Adapters. Read more
  • Context length is measured in tokens. (The model context can change by the target inference library)
  • Parameter count is shown in billions (B).
  • Links lead to the model's page on Hugging Face or the official website when available.

This table provides a comprehensive overview of the available models, their sizes, capabilities, and support for various fine-tuning techniques. When choosing a model for fine-tuning, consider factors such as the model size, context length, and support for specific optimization techniques like vLLM and LoRA.