Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Speed up GcdInt, PValuation, SmallestRootInt, IsPrimePowerInt #2086

Merged
merged 4 commits into from
Jan 15, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
70 changes: 59 additions & 11 deletions hpcgap/lib/integer.gi
Original file line number Diff line number Diff line change
Expand Up @@ -923,8 +923,51 @@ InstallGlobalFunction( IsOddInt, n -> n mod 2 = 1 );
##
#F IsPrimePowerInt( <n> ) . . . . . . . . . . . test for a power of a prime
##
InstallGlobalFunction( IsPrimePowerInt,
n -> IsPrimeInt( SmallestRootInt( n ) ) );
InstallGlobalFunction( IsPrimePowerInt, function(n)
local k, r, s, p, l, q, i;

# check the argument
if n > 1 then k := 2; s := 1;
elif n < -1 then k := 3; s := -1; n := -n;
else return false;
fi;

# exclude small divisors, and thereby large exponents
for p in Primes do
if p*p > n then return true; fi; # n is prime
r := PVALUATION_INT(n, p);
if r > 0 then
if s = -1 and IsEvenInt(r) then return false; fi;
return n = p^r;
fi;
od;
l := LogInt( n, p );

# loop over the possible prime divisors of exponents
# use Fermat's little theorem to cast out impossible ones:
# for suppose we had r such that n = r^k. Then by Fermat,
# n^((q-1)/k) = r^(q-1) is congruent 0 or 1 mod q
i := Position(Primes, k);
while k <= l do
q := 2*k+1; while not IsPrimeInt(q) do q := q+2*k; od;
if PowerModInt( n, (q-1)/k, q ) <= 1 then
r := RootInt( n, k );
if r ^ k = n then
n := r;
l := QuoInt( l, k );
continue;
fi;
fi;
if i <> fail and i < Length(Primes) then
i := i + 1;
k := Primes[i];
else
k := NextPrimeInt( k );
fi;
od;

return IsPrimeInt(n);
end);


#############################################################################
Expand Down Expand Up @@ -1118,7 +1161,7 @@ InstallGlobalFunction( SignInt, SIGN_RAT ); # support rationals for backwards co
#F SmallestRootInt( <n> ) . . . . . . . . . . . smallest root of an integer
##
InstallGlobalFunction(SmallestRootInt,function ( n )
local k, r, s, p, l, q;
local k, r, s, p, l, q, i;

# check the argument
if n > 0 then k := 2; s := 1;
Expand All @@ -1127,25 +1170,30 @@ InstallGlobalFunction(SmallestRootInt,function ( n )
fi;

# exclude small divisors, and thereby large exponents
if n mod 2 = 0 then
p := 2;
else
p := 3; while p < 100 and n mod p <> 0 do p := p+2; od;
fi;
for p in Primes do
if p*p > n then return s * n; fi;
if n mod p = 0 then break; fi;
od;
l := LogInt( n, p );

# loop over the possible prime divisors of exponents
# use Euler's criterion to cast out impossible ones
# use Fermat's little theorem to cast out impossible ones:
# for suppose we had r such that n = r^k. Then by Fermat,
# n^((q-1)/k) = r^(q-1) is congruent 0 or 1 mod q
i := Position(Primes, k);
while k <= l do
q := 2*k+1; while not IsPrimeInt(q) do q := q+2*k; od;
if PowerModInt( n, (q-1)/k, q ) <= 1 then
r := RootInt( n, k );
if r ^ k = n then
n := r;
l := QuoInt( l, k );
else
k := NextPrimeInt( k );
continue;
fi;
fi;
if i <> fail and i < Length(Primes) then
i := i + 1;
k := Primes[i];
else
k := NextPrimeInt( k );
fi;
Expand Down
70 changes: 59 additions & 11 deletions lib/integer.gi
Original file line number Diff line number Diff line change
Expand Up @@ -910,8 +910,51 @@ InstallGlobalFunction( IsOddInt, n -> n mod 2 = 1 );
##
#F IsPrimePowerInt( <n> ) . . . . . . . . . . . test for a power of a prime
##
InstallGlobalFunction( IsPrimePowerInt,
n -> IsPrimeInt( SmallestRootInt( n ) ) );
InstallGlobalFunction( IsPrimePowerInt, function(n)
local k, r, s, p, l, q, i;

# check the argument
if n > 1 then k := 2; s := 1;
elif n < -1 then k := 3; s := -1; n := -n;
else return false;
fi;

# exclude small divisors, and thereby large exponents
for p in Primes do
if p*p > n then return true; fi; # n is prime
r := PVALUATION_INT(n, p);
if r > 0 then
if s = -1 and IsEvenInt(r) then return false; fi;
return n = p^r;
fi;
od;
l := LogInt( n, p );

# loop over the possible prime divisors of exponents
# use Fermat's little theorem to cast out impossible ones:
# for suppose we had r such that n = r^k. Then by Fermat,
# n^((q-1)/k) = r^(q-1) is congruent 0 or 1 mod q
i := Position(Primes, k);
while k <= l do
q := 2*k+1; while not IsPrimeInt(q) do q := q+2*k; od;
if PowerModInt( n, (q-1)/k, q ) <= 1 then
r := RootInt( n, k );
if r ^ k = n then
n := r;
l := QuoInt( l, k );
continue;
fi;
fi;
if i <> fail and i < Length(Primes) then
i := i + 1;
k := Primes[i];
else
k := NextPrimeInt( k );
fi;
od;

return IsPrimeInt(n);
end);


#############################################################################
Expand Down Expand Up @@ -1105,7 +1148,7 @@ InstallGlobalFunction( SignInt, SIGN_RAT ); # support rationals for backwards co
#F SmallestRootInt( <n> ) . . . . . . . . . . . smallest root of an integer
##
InstallGlobalFunction(SmallestRootInt,function ( n )
local k, r, s, p, l, q;
local k, r, s, p, l, q, i;

# check the argument
if n > 0 then k := 2; s := 1;
Expand All @@ -1114,25 +1157,30 @@ InstallGlobalFunction(SmallestRootInt,function ( n )
fi;

# exclude small divisors, and thereby large exponents
if n mod 2 = 0 then
p := 2;
else
p := 3; while p < 100 and n mod p <> 0 do p := p+2; od;
fi;
for p in Primes do
if p*p > n then return s * n; fi;
if n mod p = 0 then break; fi;
od;
l := LogInt( n, p );

# loop over the possible prime divisors of exponents
# use Euler's criterion to cast out impossible ones
# use Fermat's little theorem to cast out impossible ones:
# for suppose we had r such that n = r^k. Then by Fermat,
# n^((q-1)/k) = r^(q-1) is congruent 0 or 1 mod q
i := Position(Primes, k);
while k <= l do
q := 2*k+1; while not IsPrimeInt(q) do q := q+2*k; od;
if PowerModInt( n, (q-1)/k, q ) <= 1 then
r := RootInt( n, k );
if r ^ k = n then
n := r;
l := QuoInt( l, k );
else
k := NextPrimeInt( k );
continue;
fi;
fi;
if i <> fail and i < Length(Primes) then
i := i + 1;
k := Primes[i];
else
k := NextPrimeInt( k );
fi;
Expand Down
38 changes: 38 additions & 0 deletions src/integer.c
Original file line number Diff line number Diff line change
Expand Up @@ -690,6 +690,20 @@ UInt8 UInt8_ObjInt(Obj i)
#endif
}

// This function returns an immediate integer, or
// an integer object with exactly one limb, and returns
// its absolute value as an unsigned integer.
static inline UInt AbsOfSmallInt(Obj x)
{
if (!IS_INTOBJ(x)) {
GAP_ASSERT(SIZE_INT(x) == 1);
return VAL_LIMB0(x);
}
Int val = INT_INTOBJ(x);
return val > 0 ? val : -val;
}


/****************************************************************************
**
*F PrintInt( <gmp> ) . . . . . . . . . . . . . . . . print a GMP constant
Expand Down Expand Up @@ -2163,6 +2177,18 @@ Obj GcdInt ( Obj opL, Obj opR )
sizeL = SIZE_INT_OR_INTOBJ(opL);
sizeR = SIZE_INT_OR_INTOBJ(opR);

// for small inputs, run Euclid directly
if (sizeL == 1 || sizeR == 1) {
if (sizeR != 1) {
SWAP(Obj, opL, opR);
}
UInt r = AbsOfSmallInt(opR);
FAKEMPZ_GMPorINTOBJ(mpzL, opL);
r = mpz_gcd_ui(0, MPZ_FAKEMPZ(mpzL), r);
CHECK_FAKEMPZ(mpzL);
return ObjInt_UInt(r);
}

NEW_FAKEMPZ( mpzResult, sizeL < sizeR ? sizeL : sizeR );
FAKEMPZ_GMPorINTOBJ( mpzL, opL );
FAKEMPZ_GMPorINTOBJ( mpzR, opR );
Expand Down Expand Up @@ -2396,6 +2422,18 @@ Obj FuncPVALUATION_INT(Obj self, Obj n, Obj p)
if ( p == INTOBJ_INT(0) )
ErrorMayQuit( "PValuation: <p> must be nonzero", 0L, 0L );

if (SIZE_INT_OR_INTOBJ(n) == 1 && SIZE_INT_OR_INTOBJ(p) == 1) {
UInt N = AbsOfSmallInt(n);
UInt P = AbsOfSmallInt(p);
if (N == 0 || P == 1) return INTOBJ_INT(0);
k = 0;
while (N % P == 0) {
N /= P;
k++;
}
return INTOBJ_INT(k);
}

/* For certain values of p, mpz_remove replaces its "dest" argument
and tries to deallocate the original mpz_t in it. This means
we cannot use a fake_mpz_t for it. However, we are not really
Expand Down
71 changes: 69 additions & 2 deletions tst/testinstall/intarith.tst
Original file line number Diff line number Diff line change
Expand Up @@ -1332,13 +1332,41 @@ gap> for m in [1..100] do
#
gap> checkPValuationInt:=function(n,p)
> local k, m;
> if n = 0 then return true; fi;
> k:=PVALUATION_INT(n,p);
> if n = 0 or p = 1 or p = -1 then return k = 0; fi;
> m:=n/p^k;
> return IsInt(m) and (m mod p) <> 0;
> end;;
gap> ForAll([-10000 .. 10000], n-> ForAll([2,3,5,7,251], p -> checkPValuationInt(n,p)));
gap> ps := [-2^60-1,-2^60,-2^28-1,-2^28];;
gap> Append(ps, [-6..-1]);
gap> Append(ps, [1..20]);
gap> Append(ps, [250..260]);
gap> Append(ps, [2^28-1,2^28,2^60-1,2^60]);;
gap> SetX([-1000 .. 1000], ps, checkPValuationInt);
[ true ]
gap> SetX([-1000 .. 1000], ps, {n,p}->checkPValuationInt(n+2^100,p));
[ true ]
gap> SetX([-1000 .. 1000], ps, {n,p}->checkPValuationInt(n-2^100,p));
[ true ]

#
gap> p:=2^255-19;; # big prime
gap> ForAll([1..30], k-> PVALUATION_INT((p+1)^k,2)=k);
true
gap> ForAll([1..30], k-> PVALUATION_INT((p+1)^k,p)=0);
true
gap> ForAll([1..30], k-> PVALUATION_INT(p^k+1,2)=1);
true
gap> ForAll([1..30], k-> PVALUATION_INT(p^k+1,p)=0);
true

#
gap> SetX(data, dataNonZero, checkPValuationInt);
[ true ]
gap> List([2..6], p->List(data, n->PVALUATION_INT(n,p)));
[ [ 0, 20, 4, 0, 0, 0, 4, 20, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 10, 2, 0, 0, 0, 2, 10, 0 ], [ 0, 20, 4, 0, 0, 0, 4, 20, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ]
gap> PVALUATION_INT(10,0);
Error, PValuation: <p> must be nonzero
gap> PVALUATION_INT(0,0);
Expand Down Expand Up @@ -1366,6 +1394,45 @@ Error, IsProbablyPrimeInt: <reps> must be a small positive integer
gap> IS_PROBAB_PRIME_INT(1, 0);
Error, IsProbablyPrimeInt: <reps> must be a small positive integer

#
# test SmallestRootInt
#
gap> SetX(Primes, [1..30], {p,k}->SmallestRootInt(p^k)=p);
[ true ]
gap> SetX(Primes, [1..30], {p,k}->SmallestRootInt(p^k*1009)=p^k*1009);
[ true ]
gap> SetX(Primes, [1..30], {p,k}->SmallestRootInt((p*1009)^k)=p*1009);
[ true ]
gap> p:=2^255-19;; # big prime
gap> ForAll([1..30], k-> SmallestRootInt(p^k) = p);
true
gap> List([-10..10], SmallestRootInt);
[ -10, -9, -2, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 2, 5, 6, 7, 2, 3, 10 ]
gap> List(data, SmallestRootInt);
[ -100000000000000000001, -10000, -10000, -1, 0, 1, 10, 10,
100000000000000000001 ]
gap> List([-2^101,-2^100,2^100,2^101], SmallestRootInt);
[ -2, -16, 2, 2 ]

#
# test IsPrimePowerInt
#
gap> P:=2^255-19;; # big prime
gap> Filtered([-10..10], IsPrimePowerInt);
[ -8, -7, -5, -3, -2, 2, 3, 4, 5, 7, 8, 9 ]
gap> SetX(Primes, [1..30], {p,k}->IsPrimePowerInt(p^k));
[ true ]
gap> SetX(Primes, [1..10], {p,k}->IsPrimePowerInt(P*p^k));
[ false ]
gap> SetX(Primes, [1..10], {p,k}->IsPrimePowerInt((P*p)^k));
[ false ]
gap> ForAll([1..30], k->IsPrimePowerInt(P^k));
true
gap> ForAll([1..10], k->not IsPrimePowerInt(1009*P^k));
true
gap> ForAll([1..30], k->not IsPrimePowerInt((1009*P)^k));
true

#
gap> STOP_TEST( "intarith.tst", 1);

Expand Down