Skip to content

Commit

Permalink
Added more specialised function for testing conjugacy of subgroups of Sn
Browse files Browse the repository at this point in the history
Moved tst file to right location

Added comments in testfile

Changed comments

Changed result for PerfectResiduum
  • Loading branch information
Dominik Bernhardt committed Jan 25, 2019
1 parent 2acdb15 commit 0f16ee0
Show file tree
Hide file tree
Showing 3 changed files with 29 additions and 1 deletion.
14 changes: 14 additions & 0 deletions lib/gpprmsya.gi
Original file line number Diff line number Diff line change
Expand Up @@ -1552,6 +1552,20 @@ local og,oh,cb,cc,cac,perm1,perm2,
fi;
end);

InstallMethod( IsConjugate, "for natural symmetric group",
true, [ IsNaturalSymmetricGroup, IsGroup, IsGroup ],
function (s, g, h)
local res;
res := SubgpConjSymmgp(s, g, h);
if IsPerm(res) then
return true;
elif res = fail then
return false;
else
TryNextMethod();
fi;
end);

#############################################################################
##
#M RepresentativeAction( <G>, <d>, <e>, <opr> ) . . for symmetric groups
Expand Down
2 changes: 1 addition & 1 deletion lib/grp.gd
Original file line number Diff line number Diff line change
Expand Up @@ -1273,7 +1273,7 @@ DeclareGlobalFunction("MaximalSolvableSubgroups");
## is the smallest normal subgroup of <A>G</A> that has a solvable factor group.
## <Example><![CDATA[
## gap> PerfectResiduum(Group((1,2,3,4,5),(1,2)));
## Group([ (1,3,2), (1,4,3), (3,5,4) ])
## Group([ (1,3,2), (1,4,3), (2,5,4) ])
## ]]></Example>
## </Description>
## </ManSection>
Expand Down
14 changes: 14 additions & 0 deletions tst/testinstall/ConjNatSym.tst
Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@
# The following two test use the new version for natural symmetric group

gap> IsConjugate( SymmetricGroup(5), Group((1,2)), Group((3,4)));
true
gap> IsConjugate( SymmetricGroup(5), Group((1,2)), Group((3,4,5)));
false

# This runs into the TryNextMethod case
gap> IsConjugate( SymmetricGroup(200),PrimitiveGroup(200,4), PrimitiveGroup(200,3));
false

# Here, using SubgpConjSymmgp yields a significant speedup
gap> IsConjugate(SymmetricGroup(250),Group([ (1,5,9,7)(2,3)(4,8,6,10), (1,9)(5,7)(8,10), (1,9)(8,10) ]), Group([ (1,3)(2,8,10)(4,6)(5,11,7,9), (2,8)(9,11), (1,3)(4,6)(5,9,7,11)(8,10) ]));
false

0 comments on commit 0f16ee0

Please sign in to comment.