Skip to content

freedomtan/edge_tpu_python_scripts

Repository files navigation

edge_tpu_python_scripts

some scripts I used to test Google's Edge TPU

I got a Coral USB accelerator as a gift from TensorFlow Dev Summit 2019. And bought a Coral Dev Board from Mouser later. Both of them look good. But as an engineer, I like to know the performance of the Edge TPU. There is a table in the Edge TPU FAQ,

Model architecture Desktop CPU Desktop CPU + USB Accelerator (USB 3.0) with Edge TPU Embedded CPU Dev Board with Edge TPU
MobileNet v1 47 ms 2.2 ms 179 ms 2.2 ms
MobileNet v2 45 ms 2.3 ms 150 ms 2.5 ms
Inception v1 92 ms 3.6 ms 406 ms 3.9 ms
Inception v4 792 ms 100 ms 3,463 ms 100 ms

But I found no way to reproduce them, so I wrote these two scripts. With python3 label_image_coral.py -c 50 -m classification_model, I can get

Model architecture iMac 2015 CPU + USB Accelerator (USB 3.0) with Edge TPU Macbook Pro 13-inch 2018 CPU + USB Accelerator (USB 3.0) with Edge TPU Dev Board with Edge TPU
MobileNet v1 2.91 ms 3.10 ms 2.51 ms
MobileNet v2 3.01 ms 3.20 ms 2.69 ms
Inception v1 3.74 ms 4.10 ms 4.23 ms
Inception v4 84.93 ms 92.32 ms 101.87 ms

With Edge TPU C++ API, I can get

Model architecture iMac 2015 CPU + USB Accelerator (USB 3.0) with Edge TPU Macbook Pro 13-inch 2018 CPU + USB Accelerator (USB 3.0) with Edge TPU Dev Board with Edge TPU Dev Board Edge TPU C++ API Macbook Pro 13-inch 2018 CPU + USB Accelerator (USB 3.0) with Edge TPU C++ API
MobileNet v1 2.91 ms 3.10 ms 2.51 ms 2.24 ms 2.73 ms
MobileNet v2 3.01 ms 3.20 ms 2.69 ms 2.45 ms 2.89 ms
Inception v1 3.74 ms 4.10 ms 4.23 ms 3.77 ms 3.52 ms
Inception v4 84.93 ms 92.32 ms 101.87 ms 101.63 ms 84.92 ms

The label_image using Edge TPU C++ API I used to test the C++ API.

About

some scripts I used to test Google's Edge TPU

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages