Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add visualization #49

Merged
merged 6 commits into from
Apr 20, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions docs/api/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -9,3 +9,4 @@ API Reference
niaarm
rule
rule_list
visualize
6 changes: 6 additions & 0 deletions docs/api/visualize.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
Visualize
=========

.. automodule:: niaarm.visualize
:members:
:show-inheritance:
1 change: 1 addition & 0 deletions niaarm/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
from niaarm.feature import Feature
from niaarm.mine import get_rules
from niaarm.rule_list import RuleList
from niaarm.visualize import tdf


__all__ = ['NiaARM', 'Dataset', 'Feature', 'Rule', 'RuleList', 'get_rules']
Expand Down
18 changes: 14 additions & 4 deletions niaarm/rule.py
Original file line number Diff line number Diff line change
Expand Up @@ -162,10 +162,20 @@ def __init__(self, antecedent, consequent, fitness=0.0, transactions=None):
self.antecedent = antecedent
self.consequent = consequent
self.fitness = fitness
self.num_transactions = len(transactions)
self.__inclusion = (len(self.antecedent) + len(self.consequent)) / len(transactions.columns)

self.__post_init__(transactions)
self.num_transactions = 0
self.__inclusion = 0
self.__amplitude = 0
self.antecedent_count = 0
self.consequent_count = 0
self.full_count = 0
self.ant_not_con = 0
self.con_not_ant = 0
self.not_ant_not_con = 0

if transactions is not None:
self.num_transactions = len(transactions)
self.__inclusion = (len(self.antecedent) + len(self.consequent)) / len(transactions.columns)
self.__post_init__(transactions)

def __post_init__(self, transactions):
min_ = transactions.min(numeric_only=True)
Expand Down
107 changes: 107 additions & 0 deletions niaarm/visualize.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,107 @@
import matplotlib.pyplot as plt
from matplotlib.cm import ScalarMappable
from matplotlib.colors import Normalize
import numpy as np


def tdf(rule, transactions):
"""Visualize rule as hill slopes.

**Reference:** Fister, I. et al. (2020). Visualization of Numerical Association Rules by Hill Slopes.
In: Analide, C., Novais, P., Camacho, D., Yin, H. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2020.
IDEAL 2020. Lecture Notes in Computer Science(), vol 12489. Springer, Cham. https://doi.org/10.1007/978-3-030-62362-3_10

Args:
rule (Rule): Association rule to visualize.
transactions (pandas.DataFrame): Transactions as a DataFrame.

Returns:
tuple[matplotlib.figure.Figure, matplotlib.axes.Axes]: Figure and Axes of plot.

"""
features = rule.antecedent + rule.consequent
num_features = len(features)
support = np.empty(num_features)
max_index = -1
max_support = -1
match_x = None
x_count = 0
for i, f in enumerate(features):
if f.dtype != 'cat':
match = (transactions[f.name] <= f.max_val) & (transactions[f.name] >= f.min_val)
else:
match = transactions[f.name] == f.categories[0]

supp_count = match.sum()
supp = supp_count / len(transactions)
support[i] = supp
if supp >= max_support:
max_support = supp
max_index = i
match_x = match
x_count = supp_count

confidence = np.empty(num_features)
for i, y in enumerate(features):
if i == max_index:
confidence[i] = 2
continue
if y.dtype != 'cat':
match_y = (transactions[y.name] <= y.max_val) & (transactions[y.name] >= y.min_val)
else:
match_y = transactions[y.name] == y.categories[0]
supp_count = (match_x & match_y).sum()
confidence[i] = supp_count / x_count

indices = np.argsort(confidence)[::-1]
confidence = confidence[indices]
confidence[0] = max_support
support = support[indices]

length = np.sqrt(support ** 2 + confidence ** 2)
position = np.empty(num_features)
position[0] = length[0] / 2
for i, ln in enumerate(length[1:]):
position[i + 1] = position[i] + length[i] / 2 + confidence[i + 1] + ln / 2

s = (length + support + confidence) / 2
a = s * (s - length) * (s - support) * (s - confidence)

if np.all(a >= 0):
a = np.sqrt(a)
height = 2 * a / length
x = np.sqrt(support ** 2 - height ** 2)

vec = np.concatenate((-length / 2, -length / 2 + x, length / 2))
vec = (vec.reshape(3, num_features) + position).T.reshape(len(vec))

height = np.concatenate((height, np.zeros(len(vec) - num_features)))
height = np.reshape(height, (3, num_features)).T.reshape(len(vec))
height = np.concatenate((np.zeros(1), height))[:len(vec)]

fig, ax = ribbon(vec, height)
ax.set_ylabel('Location')
ax.set_yticks(range(num_features + 1))
ax.set_yticklabels(range(num_features + 1))
ax.set_zlabel('Height')
ax.view_init(30, 240)
return fig, ax


def ribbon(x, z, width=0.5):
fig, ax = plt.subplots(subplot_kw={'projection': '3d'})

xi = np.linspace(x[:-1], x[1:], num=100, axis=1).flatten()
zi = np.interp(xi, x, z)

xx = np.column_stack((-np.ones(len(zi)), np.ones(len(zi)))) * width + 1
yy = np.column_stack((xi, xi))
zz = np.column_stack((zi, zi))

scalar_map = ScalarMappable(Normalize(vmin=0, vmax=zi.max()))
colors = scalar_map.to_rgba(zz)
ax.plot_surface(xx, yy, zz, rstride=1, cstride=1, facecolors=colors)

fig.colorbar(scalar_map, shrink=0.5, aspect=10)

return fig, ax