Skip to content

Backend for using AWS S3 as a cache in the `Flask-Caching` extension

License

Notifications You must be signed in to change notification settings

fictive-kin/flask-caching-s3

Repository files navigation

AWS S3 Backend for Flask-Cache

When installed and configured, this package will allow you to utilize an AWS S3 bucket as the backend for Flask-Cache.

Yes, S3 is not a very good cache. But if millisecond performance is not a concern, S3 is a low-effort and simple to implement alternative that is far less costly than Redis or Memcache.

Installation

Install via pip directly, or whatever your preferred dependency/package environment manager may be (poetry, pipenv, ...):

pip install flask-cache-s3

Configuration

Configuration is straightforward, and is identical to the usual process for configuring Flask-Cache. Note that the mechanism by which you choose to configure is up to you; the example below is simply for illustrative purposes:

from flask import Flask
from flask_caching import Cache

config = {
    # The import path of the S3 cache backend
    "CACHE_TYPE": "flask_caching_s3.S3Cache",
    # The bucket name where you'd like cache artifacts to be stored/queried
    "CACHE_S3_BUCKET": "your-unique-bucket-name",
    # Optional key prefix
    "CACHE_KEY_PREFIX": "cache_",
}

app = Flask(__name__)
app.config.from_mapping(config)
cache = Cache(app)

Of course, an application-factory is also supported:

from flask import Flask
from flask_caching import Cache

configuration = {
    # The import path of the S3 cache backend
    "CACHE_TYPE": "flask_caching_s3.S3Cache",
    # The bucket name where you'd like cache artifacts to be stored/queried
    "CACHE_S3_BUCKET": "your-unique-bucket-name",
    # Optional key prefix
    "CACHE_KEY_PREFIX": "cache_",
}

# Initialize the extension without the application object present,
# as is typical in the Flask application factory pattern
cache = Cache()

def create_app():
    """Create and configure an application instance."""

    app = Flask("factory-app")
    app.config.from_mapping(configuration)

    cache.init_app(app)

    return app

And in situations where you may want to have _multiple_ caching strategies with different backends, a per-object configuration is supported:

from flask import Flask
from flask_caching import Cache

s3_cache = Cache()
redis_cache = Cache()

def create_app():
    """Create and configure an application instance."""

    app = Flask("factory-app")

    # Setup our s3 cache
    s3_cache.init_app(
        app,
        config={
            "CACHE_TYPE": "flask_caching_s3.S3Cache",
            "CACHE_S3_BUCKET": "the-tholian-initiative"
        }
    )

    # And now, separately, we can setup our redis cache,
    # with redis-specific configuration options.
    redis_cache.init_app(
        app,
        config={
            "CACHE_TYPE": "RedisCache",
            "CACHE_REDIS_HOST": "example.com"
        }
    )

    return app

Configuration Options

Required

  • CACHE_S3_BUCKET: There's only one required configuration, and that's the S3 bucket name. Your bucket must already exist in S3, and you must set the correct ACLs/permissions for your application to read and write from it. This backend will do none of that work for you.

Optional

The following options can be provided to the S3Cache, but are entirely optional:

  • CACHE_KEY_PREFIX: A string that will be prepended to /every/ cache key, for both reads and writes. Useful if you want to use the same bucket for non-cache related things and avoid disaster when you call cache.clear() and wonder where all your S3 bucket contents have gone.

  • CACHE_DEFAULT_TIMEOUT: The number of seconds that an item in the cache is valid for. After this time has elapsed, the item is considered expired, and even if the item is still in the S3 bucket, a cache miss will occur.

  • CACHE_S3_ENDPOINT_URL: The endpoint for the S3 service. Typically this is only utilized when using something like localstack for local development/testing.

  • CACHE_OPTIONS: A dictionary of key/value pairs for more fine-grained configuration of how the cache will behave.

    s3_cache.init_app(
        app,
        config={
            "CACHE_TYPE": "flask_caching_s3.S3Cache",
            "CACHE_S3_BUCKET": "the-tholian-initiative",
            "CACHE_OPTIONS": {"purge_expired_on_read": True}
        }
    )

    The only key currently supported in CACHE_OPTIONS is the boolean purge_expired_on_read, which defaults to False. If set to True, items will be evicted from S3 if Flask-Cache`` attempts to read them (via cache.get() or cache.has(), for example) and they have expired.

S3 Object Lifecycle Management

The use of purge_expired_on_read does incur a performance penalty since the eviction/deletion is performed in the same operation, and it also means that if some items are never accessed, they will continue to exist in the bucket far beyond their expiration.

The proper solution to this is to create an S3 object lifecycle rule which can clean up objects for you. Care must be taken here, though, since you cannot rely on the CACHE_DEFAULT_TIMEOUT value as the boundary value for object lifetimes; users of Flask-Cache can always override the default timeout at call-time with e.g.:

@app.route("/")
@cache.cached(timeout=50)
def index():
    return render_template('index.html')

Where cache.cached(timeout=3600) indicates that the cached object is valid for 3600 seconds, even though our default may be set to 300.

Thus, if you do choose to go with an Object Lifecycle Management rule, pick an Expiration policy that is beyond whatever maximum timeout value that you would conceivably apply.

Testing

  1. Have Docker installed and running
  2. Clone this repository
  3. Ensure you have poetry available on your system
  4. poetry run pytest

The test suite will spin up an ephemeral Docker container; it may take a few seconds for it to load. The relevant test fixtures will handle creating objects and their values in the Localstack S3 service.

About

Backend for using AWS S3 as a cache in the `Flask-Caching` extension

Resources

License

Stars

Watchers

Forks

Packages

No packages published