This repository includes the processing scripts of the HydReSGeo dataset for the hyperspectral, LWIR, and soil moisture data.
License: | 3-Clause BSD license |
---|---|
Author: | Felix M. Riese |
Requirements: | Python 3 with these packages |
Citation: | see Citation and in the bibtex file |
Documentation: | Documentation |
- Hyperspectral sensors: Cubert UHD 285 (VNIR), FLIR Tau2 640 (LWIR), ASD FieldSpec 4 Sensors (VNIR & SWIR)
- Hydrological sensor: IMKO Pico32 (TDR)
Code:
[1] F. M. Riese, "Hyperspectral Processing Scripts for HydReSGeo Dataset," Zenodo, 2020. DOI:10.5281/zenodo.3706418
@misc{riese2020hyperspectral,
author = {Riese, Felix~M.},
title = {{Hyperspectral Processing Scripts for the HydReSGeo Dataset}},
year = {2020},
DOI = {10.5281/zenodo.3706418},
publisher = {Zenodo},
howpublished = {\href{https://doi.org/10.5281/zenodo.3706418}{doi.org/10.5281/zenodo.3706418}}
}
Dataset:
[2] S. Keller, F. M. Riese, N. Allroggen, and C. Jackisch, "HydReSGeo: Field experiment dataset of surface-subsurface infiltration dynamics acquired by hydrological, remote sensing, and geophysical measurement techniques," GFZ Data Services, 2020. DOI:10.5880/fidgeo.2020.015
@misc{keller2020hydresgeo,
author = {Keller, Sina and Riese, Felix~M. and Allroggen, Niklas and
Jackisch, Conrad},
title = {{HydReSGeo: Field experiment dataset of surface-subsurface
infiltration dynamics acquired by hydrological, remote
sensing, and geophysical measurement techniques}},
year = {2020},
publisher = {GFZ Data Services},
DOI = {10.5880/fidgeo.2020.015},
}
[3] S. Keller, F. M. Riese, N. Allroggen, C. Jackisch, and S. Hinz, “Modeling subsurface soil moisture based on hyperspectral data: First results of a multilateral field campaign,” in Tagungsband der 37. Wissenschaftlich- Technische Jahrestagung der DGPF e.V., vol. 27, Munich, Germany, 2018, pp. 34–48. Link
[4] S. Keller, F. M. Riese, J. Stötzer, P. M. Maier, and S. Hinz, “Developing a machine learning framework for estimating soil moisture with VNIR hyperspectral data,” ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. IV-1, pp. 101–108, 2018. DOI:10.5194/isprs-annals-IV-1-101-2018
[5] F. M. Riese and S. Keller, “Fusion of hyperspectral and ground penetrating radar data to estimate soil moisture,” in 2018 9th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, Netherlands, 2018, pp. 1–5. DOI:10.1109/WHISPERS.2018.8747076
[6] S. Keller, Fusion hyperspektraler, LWIR- und Bodenradar-Daten mit maschinellen Lernverfahren zur Bodenfeuchteschätzung, 5th ed. Wichmann, Berlin, 2019, p. 217–250.
- [ ] Include plots with masks and bars into the documentation
- [ ] Speed-up the script by opening dataframes only once
- [ ] Describe data from
rs/hyp/
andrs/lwir/
in the documentation