Skip to content

felixriese/hyperspectral-processing

Repository files navigation

Codacy Travis CI Codecov Documentation Status

Hyperspectral Processing Scripts for the HydReSGeo Dataset

This repository includes the processing scripts of the HydReSGeo dataset for the hyperspectral, LWIR, and soil moisture data.

License:3-Clause BSD license
Author:Felix M. Riese
Requirements:Python 3 with these packages
Citation:see Citation and in the bibtex file
Documentation:Documentation

Sensors

  • Hyperspectral sensors: Cubert UHD 285 (VNIR), FLIR Tau2 640 (LWIR), ASD FieldSpec 4 Sensors (VNIR & SWIR)
  • Hydrological sensor: IMKO Pico32 (TDR)

Exemplary notebooks


Citation

Code:

[1] F. M. Riese, "Hyperspectral Processing Scripts for HydReSGeo Dataset," Zenodo, 2020. DOI:10.5281/zenodo.3706418

@misc{riese2020hyperspectral,
    author = {Riese, Felix~M.},
    title = {{Hyperspectral Processing Scripts for the HydReSGeo Dataset}},
    year = {2020},
    DOI = {10.5281/zenodo.3706418},
    publisher = {Zenodo},
    howpublished = {\href{https://doi.org/10.5281/zenodo.3706418}{doi.org/10.5281/zenodo.3706418}}
}

Dataset:

[2] S. Keller, F. M. Riese, N. Allroggen, and C. Jackisch, "HydReSGeo: Field experiment dataset of surface-subsurface infiltration dynamics acquired by hydrological, remote sensing, and geophysical measurement techniques," GFZ Data Services, 2020. DOI:10.5880/fidgeo.2020.015

@misc{keller2020hydresgeo,
    author = {Keller, Sina and Riese, Felix~M. and Allroggen, Niklas and
              Jackisch, Conrad},
    title = {{HydReSGeo: Field experiment dataset of surface-subsurface
              infiltration dynamics acquired by hydrological, remote
              sensing, and geophysical measurement techniques}},
    year = {2020},
    publisher = {GFZ Data Services},
    DOI = {10.5880/fidgeo.2020.015},
}

Code is Supplementary Material to

[3] S. Keller, F. M. Riese, N. Allroggen, C. Jackisch, and S. Hinz, “Modeling subsurface soil moisture based on hyperspectral data: First results of a multilateral field campaign,” in Tagungsband der 37. Wissenschaftlich- Technische Jahrestagung der DGPF e.V., vol. 27, Munich, Germany, 2018, pp. 34–48. Link

[4] S. Keller, F. M. Riese, J. Stötzer, P. M. Maier, and S. Hinz, “Developing a machine learning framework for estimating soil moisture with VNIR hyperspectral data,” ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. IV-1, pp. 101–108, 2018. DOI:10.5194/isprs-annals-IV-1-101-2018

[5] F. M. Riese and S. Keller, “Fusion of hyperspectral and ground penetrating radar data to estimate soil moisture,” in 2018 9th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, Netherlands, 2018, pp. 1–5. DOI:10.1109/WHISPERS.2018.8747076

[6] S. Keller, Fusion hyperspektraler, LWIR- und Bodenradar-Daten mit maschinellen Lernverfahren zur Bodenfeuchteschätzung, 5th ed. Wichmann, Berlin, 2019, p. 217–250.


To do:

  • [ ] Include plots with masks and bars into the documentation
  • [ ] Speed-up the script by opening dataframes only once
  • [ ] Describe data from rs/hyp/ and rs/lwir/ in the documentation