A TypeScript library for easily interacting with various Large Language Model providers through a unified interface. Equipped with performance metrics for response time and streaming, useful for benchmarking and testing.
npm install llm-chain
-
Unified interface for multiple LLM providers:
- OpenAI
- Groq
- Gemini (Google)
- Anthropic
- Together AI
- DeepSeek
- XAI
-
Type-safe API with TypeScript
-
Support for streaming responses
-
Built-in validation using Zod
-
Easy to extend for new providers
-
Automatic model validation and token limits
-
Provider-specific optimizations
-
Support for multiple deployment options (Direct API, AWS Bedrock, Google Vertex)
import { LLMClient } from "llm-chain";
// Create a client with OpenAI
const client = LLMClient.createOpenAI("your-openai-api-key");
// Simple completion
const response = await client.complete("What is the capital of France?");
console.log(response);
// Chat completion with more options
const chatResponse = await client.chatCompletion({
model: "gpt-4o-mini",
messages: [
{ role: "system", content: "You are a helpful assistant." },
{ role: "user", content: "What is the capital of France?" },
],
temperature: 0.7,
});
console.log(chatResponse.message.content);
import { LLMClient } from "llm-chain";
// Create a client with Groq
const client = LLMClient.createGroq("your-groq-api-key");
// Chat completion with Mixtral
const chatResponse = await client.chatCompletion({
model: "mixtral-8x7b-32768",
messages: [
{ role: "system", content: "You are a helpful assistant." },
{ role: "user", content: "What is the capital of France?" },
],
temperature: 0.7,
});
console.log(chatResponse.message.content);
import { LLMClient } from "llm-chain";
// Create a client with Gemini
const client = LLMClient.createGemini("your-gemini-api-key");
// Chat completion with Gemini Pro
const chatResponse = await client.chatCompletion({
model: "gemini-2.0-flash",
messages: [{ role: "user", content: "What is the capital of France?" }],
temperature: 0.7,
});
console.log(chatResponse.message.content);
import { LLMClient } from "llm-chain";
// Create a client with Anthropic
const client = LLMClient.createAnthropic("your-anthropic-api-key");
// Chat completion with Claude
const chatResponse = await client.chatCompletion({
model: "claude-3.5-sonnet-latest",
messages: [{ role: "user", content: "What is the capital of France?" }],
temperature: 0.7,
});
console.log(chatResponse.message.content);
await client.streamChatCompletion(
{
model: "mixtral-8x7b-32768", // or any other supported model
messages: [{ role: "user", content: "Write a story about a cat." }],
},
chunk => {
process.stdout.write(chunk);
}
);
- Default model: gpt-4o-mini
- Supports all OpenAI chat models
mixtral-8x7b-32768
(Mistral, 32k context)llama-3.3-70b-versatile
(Meta, 128k context)llama-3.1-8b-instant
(Meta, 128k context)- Various Whisper models for audio processing
llama3-groq-70b-8192-tool-use-preview
(Groq)llama3-groq-8b-8192-tool-use-preview
(Groq)- Various LLaMA-3 preview models
gemini-2.0-flash-exp
(Experimental, 1M input tokens)
gemini-1.5-flash
(32k context, versatile)gemini-1.5-flash-8b
(32k context, high volume)gemini-1.5-pro
(32k context, complex reasoning)
claude-3-5-sonnet-20241022
(Latest Sonnet)claude-3-5-haiku-20241022
(Latest Haiku)claude-3-opus-20240229
(Most powerful)claude-3-sonnet-20240229
(Balanced)claude-3-haiku-20240307
(Fast)claude-2.1
(Legacy)
deepseek-chat
(Latest)
grok-2-latest
(Latest)
import { LLMProvider, LLMClient } from "llm-chain";
class CustomProvider implements LLMProvider {
// Implement the LLMProvider interface
// ...
}
const client = new LLMClient(new CustomProvider(), "your-model-name");
// Direct API
const client = LLMClient.createAnthropic("your-api-key");
// AWS Bedrock
const client = LLMClient.createAnthropic("your-api-key", "bedrock", {
aws_access_key: "your-access-key",
aws_secret_key: "your-secret-key",
aws_region: "us-east-1",
});
// Google Vertex
const client = LLMClient.createAnthropic("your-api-key", "vertex", {
project_id: "your-project-id",
region: "us-central1",
});
The library provides built-in error handling and validation:
- Model availability checks
- Token limit validation
- Context window size validation
- Streaming capability checks
- Provider-specific error handling
- Performance metrics for response time and streaming
MIT