Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

faiss paper benchmarks #3189

Closed
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
482 changes: 325 additions & 157 deletions benchs/bench_fw/benchmark.py

Large diffs are not rendered by default.

63 changes: 46 additions & 17 deletions benchs/bench_fw/benchmark_io.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@
import os
import pickle
from dataclasses import dataclass
import submitit
from typing import Any, List, Optional
from zipfile import ZipFile

Expand Down Expand Up @@ -106,7 +107,7 @@ def write_file(
fn = self.get_local_filename(filename)
with ZipFile(fn, "w") as zip_file:
for key, value in zip(keys, values, strict=True):
with zip_file.open(key, "w") as f:
with zip_file.open(key, "w", force_zip64=True) as f:
if key in ["D", "I", "R", "lims"]:
np.save(f, value)
elif key in ["P"]:
Expand All @@ -117,22 +118,22 @@ def write_file(
self.upload_file_to_blobstore(filename, overwrite=overwrite)

def get_dataset(self, dataset):
if dataset.namespace is not None and dataset.namespace[:4] == "std_":
if dataset.tablename not in self.cached_ds:
self.cached_ds[dataset.tablename] = dataset_from_name(
dataset.tablename,
)
p = dataset.namespace[4]
if p == "t":
return self.cached_ds[dataset.tablename].get_train()
elif p == "d":
return self.cached_ds[dataset.tablename].get_database()
elif p == "q":
return self.cached_ds[dataset.tablename].get_queries()
else:
raise ValueError
elif dataset not in self.cached_ds:
if dataset.namespace == "syn":
if dataset not in self.cached_ds:
if dataset.namespace is not None and dataset.namespace[:4] == "std_":
if dataset.tablename not in self.cached_ds:
self.cached_ds[dataset.tablename] = dataset_from_name(
dataset.tablename,
)
p = dataset.namespace[4]
if p == "t":
self.cached_ds[dataset] = self.cached_ds[dataset.tablename].get_train(dataset.num_vectors)
elif p == "d":
self.cached_ds[dataset] = self.cached_ds[dataset.tablename].get_database()
elif p == "q":
self.cached_ds[dataset] = self.cached_ds[dataset.tablename].get_queries()
else:
raise ValueError
elif dataset.namespace == "syn":
d, seed = dataset.tablename.split("_")
d = int(d)
seed = int(seed)
Expand Down Expand Up @@ -225,3 +226,31 @@ def write_index(
logger.info(f"Saving index to {fn}")
faiss.write_index(index, fn)
self.upload_file_to_blobstore(filename)
assert os.path.exists(fn)
return os.path.getsize(fn)

def launch_jobs(self, func, params, local=True):
if local:
results = [func(p) for p in params]
return results
print(f'launching {len(params)} jobs')
executor = submitit.AutoExecutor(folder='/checkpoint/gsz/jobs')
executor.update_parameters(
nodes=1,
gpus_per_node=8,
cpus_per_task=80,
# mem_gb=640,
tasks_per_node=1,
name="faiss_benchmark",
slurm_array_parallelism=512,
slurm_partition="scavenge",
slurm_time=4 * 60,
slurm_constraint="bldg1",
)
jobs = executor.map_array(func, params)
print(f'launched {len(jobs)} jobs')
# for job, param in zip(jobs, params):
# print(f"{job.job_id=} {param=}")
results = [job.result() for job in jobs]
print(f'received {len(results)} results')
return results
27 changes: 27 additions & 0 deletions benchs/bench_fw/descriptors.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,8 +4,13 @@
# LICENSE file in the root directory of this source tree.

from dataclasses import dataclass
import logging
from typing import Any, Dict, List, Optional

import faiss # @manual=//faiss/python:pyfaiss_gpu
from .utils import timer
logger = logging.getLogger(__name__)


@dataclass
class IndexDescriptor:
Expand Down Expand Up @@ -33,6 +38,10 @@ class IndexDescriptor:
# [radius2_from, radius2_to) -> score2
range_metrics: Optional[Dict[str, Any]] = None
radius: Optional[float] = None
training_size: Optional[int] = None

def __hash__(self):
return hash(str(self))


@dataclass
Expand Down Expand Up @@ -85,3 +94,21 @@ def get_filename(
filename += f"_{self.num_vectors}"
filename += "."
return filename

def k_means(self, io, k, dry_run):
logger.info(f"k_means {k} {self}")
kmeans_vectors = DatasetDescriptor(
tablename=f"{self.get_filename()}kmeans_{k}.npy"
)
meta_filename = kmeans_vectors.tablename + ".json"
if not io.file_exist(kmeans_vectors.tablename) or not io.file_exist(meta_filename):
if dry_run:
return None, None, kmeans_vectors.tablename
x = io.get_dataset(self)
kmeans = faiss.Kmeans(d=x.shape[1], k=k, gpu=True)
_, t, _ = timer("k_means", lambda: kmeans.train(x))
io.write_nparray(kmeans.centroids, kmeans_vectors.tablename)
io.write_json({"k_means_time": t}, meta_filename)
else:
t = io.read_json(meta_filename)["k_means_time"]
return kmeans_vectors, t, None
Loading