-
Notifications
You must be signed in to change notification settings - Fork 322
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Summary: Pull Request resolved: #1676 Move SEBO-L0/L1 to OSS - Move homotopy from botorch/fb to botorch - Move SEBO from ax/fb to ax - Move deterministic_models from ax/fb to ax - Update and move storage from ax/fb to ax Differential Revision: D46528626 fbshipit-source-id: 49dd854fbc8d3e8c962b8e147864929e0dd43b02
- Loading branch information
1 parent
139e9a8
commit 36cfa53
Showing
7 changed files
with
1,076 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,234 @@ | ||
#!/usr/bin/env python3 | ||
# Copyright (c) Meta Platforms, Inc. and affiliates. | ||
# | ||
# This source code is licensed under the MIT license found in the | ||
# LICENSE file in the root directory of this source tree. | ||
|
||
import functools | ||
from typing import Any, Dict | ||
from unittest import mock | ||
|
||
import torch | ||
from ax.core.search_space import SearchSpaceDigest | ||
from ax.models.torch.botorch_defaults import get_NEI | ||
from ax.models.torch.botorch_moo import MultiObjectiveBotorchModel | ||
from ax.models.torch.deterministic_metric import ( | ||
get_and_fit_model_list_det, | ||
L1_norm_func, | ||
) | ||
from ax.models.torch_base import TorchOptConfig | ||
from ax.utils.common.testutils import TestCase | ||
from ax.utils.testing.mock import fast_botorch_optimize | ||
from botorch.models import ModelList | ||
from botorch.utils.datasets import FixedNoiseDataset | ||
from botorch.utils.multi_objective.scalarization import get_chebyshev_scalarization | ||
|
||
|
||
FIT_MODEL_MO_PATH = "ax.models.torch.deterministic_metric.fit_gpytorch_mll" | ||
CHEBYSHEV_SCALARIZATION_PATH = ( | ||
"ax.models.torch.botorch_defaults.get_chebyshev_scalarization" | ||
) | ||
|
||
|
||
# pyre-fixme[3]: Return type must be annotated. | ||
def _get_torch_test_data( | ||
dtype: torch.dtype = torch.float, | ||
cuda: bool = False, | ||
constant_noise: bool = True, | ||
# pyre-fixme[2]: Parameter must be annotated. | ||
task_features=None, | ||
): | ||
device = torch.device("cuda") if cuda else torch.device("cpu") | ||
Xs = [torch.tensor([[1.0, 2.0, 3.0], [2.0, 3.0, 4.0]], dtype=dtype, device=device)] | ||
Ys = [torch.tensor([[3.0], [4.0]], dtype=dtype, device=device)] | ||
Yvars = [torch.tensor([[0.0], [2.0]], dtype=dtype, device=device)] | ||
if constant_noise: | ||
Yvars[0].fill_(1.0) | ||
bounds = [(0.0, 1.0), (1.0, 4.0), (2.0, 5.0)] | ||
feature_names = ["x1", "x2", "x3"] | ||
task_features = [] if task_features is None else task_features | ||
metric_names = ["y", "r", "d"] | ||
return Xs, Ys, Yvars, bounds, task_features, feature_names, metric_names | ||
|
||
|
||
class BotorchDeterministicMetricMOOModelTest(TestCase): | ||
def test_l1_norm_func(self, cuda: bool = False) -> None: | ||
device = torch.device("cuda") if cuda else torch.device("cpu") | ||
for dtype in (torch.float, torch.double): | ||
init_point = torch.tensor([1.0, 1.0, 1.0], device=device, dtype=dtype) | ||
# testing a batch of two points | ||
sample_point = torch.tensor( | ||
[[1.0, 2.0, 3.0], [2.0, 3.0, 4.0]], device=device, dtype=dtype | ||
) | ||
real_values = torch.norm( | ||
(sample_point - init_point), p=1, dim=-1, keepdim=True | ||
) | ||
computed_values = L1_norm_func(X=sample_point, init_point=init_point) | ||
self.assertTrue(torch.equal(real_values, computed_values)) | ||
|
||
def test_l1_norm_func_cuda(self) -> None: | ||
if torch.cuda.is_available(): | ||
self.test_l1_norm_func(cuda=True) | ||
|
||
@fast_botorch_optimize | ||
def test_deterministic_metric_BotorchMOOModel_with_cheby_scalarization( | ||
self, | ||
dtype: torch.dtype = torch.float, | ||
cuda: bool = False, | ||
) -> None: | ||
tkwargs: Dict[str, Any] = { | ||
"device": torch.device("cuda") if cuda else torch.device("cpu"), | ||
"dtype": dtype, | ||
} | ||
Xs1, Ys1, Yvars1, bounds, tfs, fns, mns = _get_torch_test_data( | ||
dtype=dtype, cuda=cuda, constant_noise=True | ||
) | ||
Xs2, Ys2, Yvars2, _, _, _, _ = _get_torch_test_data( | ||
dtype=dtype, cuda=cuda, constant_noise=True | ||
) | ||
Xs3, Ys3, Yvars3, _, _, _, _ = _get_torch_test_data( | ||
dtype=dtype, cuda=cuda, constant_noise=True | ||
) | ||
n = 3 | ||
objective_weights = torch.tensor([1.0, 1.0, 1.0], **tkwargs) | ||
obj_t = torch.tensor([1.0, 1.0, 1.0], **tkwargs) | ||
|
||
L1_norm_penalty = functools.partial( | ||
L1_norm_func, | ||
init_point=torch.zeros(3), | ||
) | ||
|
||
# test when det_metric_names is not any of the metric names | ||
det_metric_names = ["wrong_name"] | ||
det_metric_funcs = {"wrong_name": L1_norm_penalty} | ||
model = MultiObjectiveBotorchModel( | ||
# pyre-fixme[6]: For 1st param expected `(List[Tensor], List[Tensor], Lis... | ||
model_constructor=get_and_fit_model_list_det, | ||
# pyre-fixme[6]: For 2nd param expected `(Model, Tensor, Optional[Tuple[T... | ||
acqf_constructor=get_NEI, | ||
det_metric_names=det_metric_names, | ||
det_metric_funcs=det_metric_funcs, | ||
) | ||
datasets = [ | ||
FixedNoiseDataset(X=X, Y=Y, Yvar=Y) | ||
for X, Y, Yvar in zip( | ||
Xs1 + Xs2 + Xs3, Ys1 + Ys2 + Ys3, Yvars1 + Yvars2 + Yvars3 | ||
) | ||
] | ||
with self.assertRaises(ValueError): | ||
model.fit( | ||
datasets=datasets, | ||
metric_names=mns, | ||
search_space_digest=SearchSpaceDigest( | ||
feature_names=fns, | ||
bounds=bounds, | ||
task_features=tfs, | ||
), | ||
) | ||
# test when det_metric_names matches | ||
det_metric_names = ["d"] | ||
det_metric_funcs = {"d": L1_norm_penalty} | ||
model = MultiObjectiveBotorchModel( | ||
# pyre-fixme[6]: For 1st param expected `(List[Tensor], List[Tensor], Lis... | ||
model_constructor=get_and_fit_model_list_det, | ||
# pyre-fixme[6]: For 2nd param expected `(Model, Tensor, Optional[Tuple[T... | ||
acqf_constructor=get_NEI, | ||
det_metric_names=det_metric_names, | ||
det_metric_funcs=det_metric_funcs, | ||
) | ||
# test that task_features are not supported | ||
with self.assertRaises(NotImplementedError): | ||
model.fit( | ||
datasets=datasets, | ||
metric_names=mns, | ||
search_space_digest=SearchSpaceDigest( | ||
feature_names=fns, | ||
bounds=bounds, | ||
task_features=[0], | ||
), | ||
) | ||
# test that fidelity_features are not supported | ||
with self.assertRaises(NotImplementedError): | ||
model.fit( | ||
datasets=datasets, | ||
metric_names=mns, | ||
search_space_digest=SearchSpaceDigest( | ||
feature_names=fns, | ||
bounds=bounds, | ||
fidelity_features=[0], | ||
), | ||
) | ||
# test fitting | ||
search_space_digest = SearchSpaceDigest( | ||
feature_names=fns, | ||
bounds=bounds, | ||
task_features=tfs, | ||
) | ||
with mock.patch(FIT_MODEL_MO_PATH) as _mock_fit_model: | ||
model.fit( | ||
datasets=datasets, | ||
metric_names=mns, | ||
search_space_digest=search_space_digest, | ||
) | ||
# expect only fitting 2 GPs out of 3 objectives | ||
self.assertEqual(_mock_fit_model.call_count, 2) | ||
|
||
# test passing state_dict | ||
# pyre-fixme[16]: Optional type has no attribute `state_dict` | ||
state_dict = model.model.state_dict() | ||
with mock.patch(FIT_MODEL_MO_PATH) as _mock_fit_model: | ||
model.model_constructor( # pyre-ignore: [28] | ||
Xs=model.Xs, | ||
Ys=model.Ys, | ||
Yvars=model.Yvars, | ||
task_features=model.task_features, | ||
state_dict=state_dict, | ||
fidelity_features=model.fidelity_features, | ||
metric_names=model.metric_names, | ||
refit_model=False, | ||
use_input_warping=model.use_input_warping, | ||
use_loocv_pseudo_likelihood=model.use_loocv_pseudo_likelihood, | ||
**model._kwargs, | ||
) | ||
# load state dict without fitting | ||
self.assertEqual(_mock_fit_model.call_count, 0) | ||
|
||
# test that use_loocv_pseudo_likelihood = True | ||
model = MultiObjectiveBotorchModel( | ||
# pyre-fixme[6]: For 1st param expected `(List[Tensor], List[Tensor], Lis... | ||
model_constructor=get_and_fit_model_list_det, | ||
# pyre-fixme[6]: For 2nd param expected `(Model, Tensor, Optional[Tuple[T... | ||
acqf_constructor=get_NEI, | ||
det_metric_names=det_metric_names, | ||
det_metric_funcs=det_metric_funcs, | ||
use_loocv_pseudo_likelihood=True, | ||
) | ||
self.assertTrue(model.use_loocv_pseudo_likelihood) | ||
with mock.patch(FIT_MODEL_MO_PATH) as _mock_fit_model: | ||
model.fit( | ||
datasets=datasets, | ||
metric_names=mns, | ||
search_space_digest=search_space_digest, | ||
) | ||
self.assertIsInstance(model.model, ModelList) | ||
# pyre-ignore | ||
self.assertEqual(len(model.model.models), 3) | ||
|
||
with mock.patch( | ||
CHEBYSHEV_SCALARIZATION_PATH, wraps=get_chebyshev_scalarization | ||
) as _mock_chebyshev_scalarization: | ||
model.gen( | ||
n, | ||
search_space_digest=search_space_digest, | ||
torch_opt_config=TorchOptConfig( | ||
objective_weights=objective_weights, | ||
objective_thresholds=obj_t, | ||
model_gen_options={ | ||
"acquisition_function_kwargs": { | ||
"chebyshev_scalarization": True, | ||
}, | ||
}, | ||
), | ||
) | ||
# get_chebyshev_scalarization should be called once for generated candidate. | ||
self.assertEqual(n, _mock_chebyshev_scalarization.call_count) |
Oops, something went wrong.