-
-
Notifications
You must be signed in to change notification settings - Fork 4.4k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* initial coref_er pipe * matcher more flexible * base coref component without actual model * initial setup of coref_er.score * rename to include_label * preliminary score_clusters method * apply scoring in coref component * IO fix * return None loss for now * rename to CoreferenceResolver * some preliminary unit tests * use registry as callable
- Loading branch information
Showing
10 changed files
with
829 additions
and
11 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,18 @@ | ||
from typing import List | ||
from thinc.api import Model | ||
from thinc.types import Floats2d | ||
|
||
from ...util import registry | ||
from ...tokens import Doc | ||
|
||
|
||
@registry.architectures("spacy.Coref.v0") | ||
def build_coref_model( | ||
tok2vec: Model[List[Doc], List[Floats2d]] | ||
) -> Model: | ||
"""Build a coref resolution model, using a provided token-to-vector component. | ||
TODO. | ||
tok2vec (Model[List[Doc], List[Floats2d]]): The token-to-vector subnetwork. | ||
""" | ||
return tok2vec |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,288 @@ | ||
from typing import Iterable, Tuple, Optional, Dict, Callable, Any | ||
|
||
from thinc.api import get_array_module, Model, Optimizer, set_dropout_rate, Config | ||
from itertools import islice | ||
|
||
from .trainable_pipe import TrainablePipe | ||
from .coref_er import DEFAULT_MENTIONS | ||
from ..language import Language | ||
from ..training import Example, validate_examples, validate_get_examples | ||
from ..errors import Errors | ||
from ..scorer import Scorer | ||
from ..tokens import Doc | ||
from ..vocab import Vocab | ||
|
||
|
||
default_config = """ | ||
[model] | ||
@architectures = "spacy.Coref.v0" | ||
[model.tok2vec] | ||
@architectures = "spacy.Tok2Vec.v2" | ||
[model.tok2vec.embed] | ||
@architectures = "spacy.MultiHashEmbed.v1" | ||
width = 64 | ||
rows = [2000, 2000, 1000, 1000, 1000, 1000] | ||
attrs = ["ORTH", "LOWER", "PREFIX", "SUFFIX", "SHAPE", "ID"] | ||
include_static_vectors = false | ||
[model.tok2vec.encode] | ||
@architectures = "spacy.MaxoutWindowEncoder.v2" | ||
width = ${model.tok2vec.embed.width} | ||
window_size = 1 | ||
maxout_pieces = 3 | ||
depth = 2 | ||
""" | ||
DEFAULT_MODEL = Config().from_str(default_config)["model"] | ||
|
||
DEFAULT_CLUSTERS_PREFIX = "coref_clusters" | ||
|
||
|
||
@Language.factory( | ||
"coref", | ||
assigns=[f"doc.spans"], | ||
requires=["doc.spans"], | ||
default_config={ | ||
"model": DEFAULT_MODEL, | ||
"span_mentions": DEFAULT_MENTIONS, | ||
"span_cluster_prefix": DEFAULT_CLUSTERS_PREFIX, | ||
}, | ||
default_score_weights={"coref_f": 1.0, "coref_p": None, "coref_r": None}, | ||
) | ||
def make_coref( | ||
nlp: Language, | ||
name: str, | ||
model, | ||
span_mentions: str, | ||
span_cluster_prefix: str, | ||
) -> "CoreferenceResolver": | ||
"""Create a CoreferenceResolver component. TODO | ||
model (Model[List[Doc], List[Floats2d]]): A model instance that predicts ... | ||
threshold (float): Cutoff to consider a prediction "positive". | ||
""" | ||
return CoreferenceResolver( | ||
nlp.vocab, | ||
model, | ||
name, | ||
span_mentions=span_mentions, | ||
span_cluster_prefix=span_cluster_prefix, | ||
) | ||
|
||
|
||
class CoreferenceResolver(TrainablePipe): | ||
"""Pipeline component for coreference resolution. | ||
DOCS: https://spacy.io/api/coref (TODO) | ||
""" | ||
|
||
def __init__( | ||
self, | ||
vocab: Vocab, | ||
model: Model, | ||
name: str = "coref", | ||
*, | ||
span_mentions: str, | ||
span_cluster_prefix: str, | ||
) -> None: | ||
"""Initialize a coreference resolution component. | ||
vocab (Vocab): The shared vocabulary. | ||
model (thinc.api.Model): The Thinc Model powering the pipeline component. | ||
name (str): The component instance name, used to add entries to the | ||
losses during training. | ||
span_mentions (str): Key in doc.spans where the candidate coref mentions | ||
are stored in. | ||
span_cluster_prefix (str): Prefix for the key in doc.spans to store the | ||
coref clusters in. | ||
DOCS: https://spacy.io/api/coref#init (TODO) | ||
""" | ||
self.vocab = vocab | ||
self.model = model | ||
self.name = name | ||
self.span_mentions = span_mentions | ||
self.span_cluster_prefix = span_cluster_prefix | ||
self._rehearsal_model = None | ||
self.cfg = {} | ||
|
||
def predict(self, docs: Iterable[Doc]): | ||
"""Apply the pipeline's model to a batch of docs, without modifying them. | ||
TODO: write actual algorithm | ||
docs (Iterable[Doc]): The documents to predict. | ||
RETURNS: The models prediction for each document. | ||
DOCS: https://spacy.io/api/coref#predict (TODO) | ||
""" | ||
clusters_by_doc = [] | ||
for i, doc in enumerate(docs): | ||
clusters = [] | ||
for span in doc.spans[self.span_mentions]: | ||
clusters.append([span]) | ||
clusters_by_doc.append(clusters) | ||
return clusters_by_doc | ||
|
||
def set_annotations(self, docs: Iterable[Doc], clusters_by_doc) -> None: | ||
"""Modify a batch of Doc objects, using pre-computed scores. | ||
docs (Iterable[Doc]): The documents to modify. | ||
clusters: The span clusters, produced by CoreferenceResolver.predict. | ||
DOCS: https://spacy.io/api/coref#set_annotations (TODO) | ||
""" | ||
if len(docs) != len(clusters_by_doc): | ||
raise ValueError("Found coref clusters incompatible with the " | ||
"documents provided to the 'coref' component. " | ||
"This is likely a bug in spaCy.") | ||
for doc, clusters in zip(docs, clusters_by_doc): | ||
index = 0 | ||
for cluster in clusters: | ||
key = self.span_cluster_prefix + str(index) | ||
if key in doc.spans: | ||
raise ValueError(f"Couldn't store the results of {self.name}, as the key " | ||
f"{key} already exists in 'doc.spans'.") | ||
doc.spans[key] = cluster | ||
index += 1 | ||
|
||
def update( | ||
self, | ||
examples: Iterable[Example], | ||
*, | ||
drop: float = 0.0, | ||
sgd: Optional[Optimizer] = None, | ||
losses: Optional[Dict[str, float]] = None, | ||
) -> Dict[str, float]: | ||
"""Learn from a batch of documents and gold-standard information, | ||
updating the pipe's model. Delegates to predict and get_loss. | ||
examples (Iterable[Example]): A batch of Example objects. | ||
drop (float): The dropout rate. | ||
sgd (thinc.api.Optimizer): The optimizer. | ||
losses (Dict[str, float]): Optional record of the loss during training. | ||
Updated using the component name as the key. | ||
RETURNS (Dict[str, float]): The updated losses dictionary. | ||
DOCS: https://spacy.io/api/coref#update (TODO) | ||
""" | ||
if losses is None: | ||
losses = {} | ||
losses.setdefault(self.name, 0.0) | ||
validate_examples(examples, "CoreferenceResolver.update") | ||
if not any(len(eg.predicted) if eg.predicted else 0 for eg in examples): | ||
# Handle cases where there are no tokens in any docs. | ||
return losses | ||
set_dropout_rate(self.model, drop) | ||
scores, bp_scores = self.model.begin_update([eg.predicted for eg in examples]) | ||
# TODO below | ||
# loss, d_scores = self.get_loss(examples, scores) | ||
# bp_scores(d_scores) | ||
if sgd is not None: | ||
self.finish_update(sgd) | ||
# losses[self.name] += loss | ||
return losses | ||
|
||
def rehearse( | ||
self, | ||
examples: Iterable[Example], | ||
*, | ||
drop: float = 0.0, | ||
sgd: Optional[Optimizer] = None, | ||
losses: Optional[Dict[str, float]] = None, | ||
) -> Dict[str, float]: | ||
"""Perform a "rehearsal" update from a batch of data. Rehearsal updates | ||
teach the current model to make predictions similar to an initial model, | ||
to try to address the "catastrophic forgetting" problem. This feature is | ||
experimental. | ||
examples (Iterable[Example]): A batch of Example objects. | ||
drop (float): The dropout rate. | ||
sgd (thinc.api.Optimizer): The optimizer. | ||
losses (Dict[str, float]): Optional record of the loss during training. | ||
Updated using the component name as the key. | ||
RETURNS (Dict[str, float]): The updated losses dictionary. | ||
DOCS: https://spacy.io/api/coref#rehearse (TODO) | ||
""" | ||
if losses is not None: | ||
losses.setdefault(self.name, 0.0) | ||
if self._rehearsal_model is None: | ||
return losses | ||
validate_examples(examples, "CoreferenceResolver.rehearse") | ||
docs = [eg.predicted for eg in examples] | ||
if not any(len(doc) for doc in docs): | ||
# Handle cases where there are no tokens in any docs. | ||
return losses | ||
set_dropout_rate(self.model, drop) | ||
scores, bp_scores = self.model.begin_update(docs) | ||
# TODO below | ||
target = self._rehearsal_model(examples) | ||
gradient = scores - target | ||
bp_scores(gradient) | ||
if sgd is not None: | ||
self.finish_update(sgd) | ||
if losses is not None: | ||
losses[self.name] += (gradient ** 2).sum() | ||
return losses | ||
|
||
def add_label(self, label: str) -> int: | ||
"""Technically this method should be implemented from TrainablePipe, | ||
but it is not relevant for the coref component. | ||
""" | ||
raise NotImplementedError( | ||
Errors.E931.format( | ||
parent="CoreferenceResolver", method="add_label", name=self.name | ||
) | ||
) | ||
|
||
def get_loss(self, examples: Iterable[Example], scores) -> Tuple[float, float]: | ||
"""Find the loss and gradient of loss for the batch of documents and | ||
their predicted scores. | ||
examples (Iterable[Examples]): The batch of examples. | ||
scores: Scores representing the model's predictions. | ||
RETURNS (Tuple[float, float]): The loss and the gradient. | ||
DOCS: https://spacy.io/api/coref#get_loss (TODO) | ||
""" | ||
validate_examples(examples, "CoreferenceResolver.get_loss") | ||
# TODO | ||
return None | ||
|
||
def initialize( | ||
self, | ||
get_examples: Callable[[], Iterable[Example]], | ||
*, | ||
nlp: Optional[Language] = None, | ||
) -> None: | ||
"""Initialize the pipe for training, using a representative set | ||
of data examples. | ||
get_examples (Callable[[], Iterable[Example]]): Function that | ||
returns a representative sample of gold-standard Example objects. | ||
nlp (Language): The current nlp object the component is part of. | ||
DOCS: https://spacy.io/api/coref#initialize (TODO) | ||
""" | ||
validate_get_examples(get_examples, "CoreferenceResolver.initialize") | ||
subbatch = list(islice(get_examples(), 10)) | ||
doc_sample = [eg.reference for eg in subbatch] | ||
assert len(doc_sample) > 0, Errors.E923.format(name=self.name) | ||
self.model.initialize(X=doc_sample) | ||
|
||
def score(self, examples: Iterable[Example], **kwargs) -> Dict[str, Any]: | ||
"""Score a batch of examples. | ||
examples (Iterable[Example]): The examples to score. | ||
RETURNS (Dict[str, Any]): The scores, produced by Scorer.score_coref. | ||
DOCS: https://spacy.io/api/coref#score (TODO) | ||
""" | ||
def clusters_getter(doc, span_key): | ||
return [spans for name, spans in doc.spans.items() if name.startswith(span_key)] | ||
validate_examples(examples, "CoreferenceResolver.score") | ||
kwargs.setdefault("getter", clusters_getter) | ||
kwargs.setdefault("attr", self.span_cluster_prefix) | ||
kwargs.setdefault("include_label", False) | ||
return Scorer.score_clusters(examples, **kwargs) |
Oops, something went wrong.