Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Randomization for FractionalFactorials #510

Merged
merged 1 commit into from
Feb 5, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions bofire/data_models/strategies/fractional_factorial.py
Original file line number Diff line number Diff line change
Expand Up @@ -46,6 +46,10 @@ class FractionalFactorialStrategy(Strategy):
int,
Field(description="Number of reducing factors", ge=0),
] = 0
randomize_runorder: bool = Field(
default=False,
description="If true, the run order is randomized, else it is deterministic.",
)

@classmethod
def is_constraint_implemented(cls, my_type: Type[Constraint]) -> bool:
Expand Down
16 changes: 13 additions & 3 deletions bofire/strategies/fractional_factorial.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@ def __init__(
self.n_center = data_model.n_center
self.n_generators = data_model.n_generators
self.generator = data_model.generator
self.randomize_runoder = data_model.randomize_runorder

def _get_continuous_design(self) -> pd.DataFrame:
continuous_inputs = self.domain.inputs.get(ContinuousInput)
Expand Down Expand Up @@ -69,23 +70,32 @@ def _ask(self, candidate_count: Optional[int] = None) -> pd.DataFrame:
if len(self.domain.inputs.get(ContinuousInput)) > 0:
design = self._get_continuous_design()
if len(self.domain.inputs.get(ContinuousInput)) == len(self.domain.inputs):
return design
return self.randomize_design(design)

categorical_design = self._get_categorical_design()
if len(self.domain.inputs.get([CategoricalInput, DiscreteInput])) == len(
self.domain.inputs
):
return categorical_design
return self.randomize_design(categorical_design)

assert isinstance(design, pd.DataFrame)
# combine the two designs
return pd.concat(
design = pd.concat(
[
pd.concat([design] * len(categorical_design), ignore_index=True),
pd.concat([categorical_design] * len(design), ignore_index=True), # type: ignore
],
axis=1,
).sort_values(by=self.domain.inputs.get_keys([CategoricalInput, DiscreteInput]))
return self.randomize_design(design)

def randomize_design(self, design: pd.DataFrame) -> pd.DataFrame:
"""Randomize the run order of the design if `self.randomize_runorder` is True."""
return (
design.sample(frac=1, random_state=self._get_seed()).reset_index(drop=True)
if self.randomize_runoder
else design
)

def has_sufficient_experiments(self) -> bool:
return True
1 change: 1 addition & 0 deletions tests/bofire/data_models/specs/strategies.py
Original file line number Diff line number Diff line change
Expand Up @@ -589,6 +589,7 @@
"n_center": 0,
"n_generators": 0,
"generator": "",
"randomize_runorder": False,
},
)

Expand Down
57 changes: 57 additions & 0 deletions tests/bofire/strategies/test_fractional_factorial.py
Original file line number Diff line number Diff line change
Expand Up @@ -157,6 +157,63 @@ def test_FractionalFactorialStrategy_ask():
assert len(candidates) == 10


def test_FractionalFactorialStrategy_randomize_runorder():
# test no randomization
strategy_data = FractionalFactorialStrategy(
domain=Domain(
inputs=Inputs(
features=[
ContinuousInput(key="a", bounds=(0, 1)),
ContinuousInput(key="b", bounds=(-2, 8)),
],
),
),
randomize_runorder=False,
)
strategy = strategies.map(strategy_data)
design = strategy.ask(None)
design2 = strategy.ask(None)
# test with randomization
assert_frame_equal(design, design2)
strategy_data = FractionalFactorialStrategy(
domain=Domain(
inputs=Inputs(
features=[
ContinuousInput(key="a", bounds=(0, 1)),
ContinuousInput(key="b", bounds=(-2, 8)),
],
),
),
randomize_runorder=True,
seed=42,
)
strategy = strategies.map(strategy_data)
design = strategy.ask(None)
design2 = strategy.ask(None)
with pytest.raises(AssertionError):
assert_frame_equal(design, design2)
# test reproducibility with same seed for randomization
strategy_data = FractionalFactorialStrategy(
domain=Domain(
inputs=Inputs(
features=[
ContinuousInput(key="a", bounds=(0, 1)),
ContinuousInput(key="b", bounds=(-2, 8)),
],
),
),
randomize_runorder=True,
seed=42,
)
strategy = strategies.map(strategy_data)
design3 = strategy.ask(None)
design4 = strategy.ask(None)
with pytest.raises(AssertionError):
assert_frame_equal(design3, design4)
assert_frame_equal(design, design3)
assert_frame_equal(design2, design4)


def test_FractionalFactorialStrategy_ask_invalid():
strategy_data = FractionalFactorialStrategy(
domain=Domain(
Expand Down
Loading