A python package for evaluating performance of vocoder,
which implemented the evaluation methods mentioned in papar AN INVESTIGATION OF MULTI-SPEAKER TRAINING FOR WAVENET VOCODER
normal installaiton
pip install git+https://github.com/exeex/vocoder_eva.git
for develop
git clone https://github.com/exeex/vocoder_eva.git vocoder_eva
cd vocoder_eva
python setup.py develop
for single file
from vocoder_eva.eval import eval_rmse_f0
import librosa
file_r = 'demo/exmaple_data/ground_truth/arctic_b0436.wav'
file_s = 'demo/exmaple_data/no_pulse/arctic_b0436.wav'
aud_r, sr_r = librosa.load(file_raw, sr=None)
aud_s, sr_s = librosa.load(file_syn, sr=None)
assert sr_r == sr_s
if len(aud_r) != len(aud_s):
aud_r = aud_r[:len(aud_s)]
aud_s = aud_s[:len(aud_r)]
rmse_f0 = eval_rmse_f0(aud_r, aud_s, sr_r)
print(rmse_f0)
for data folders
see demp.py