forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
arm64: Import updated version of Cortex Strings' strlen
Import an updated version of the former Cortex Strings - now Arm Optimized Routines - strcmp function. The latest version introduces Advanced SIMD usage which rules it out for our purposes, but we can still pick an intermediate improvement from the previous version, namely string/aarch64/strlen.S at commit 98e4d6a from https://github.com/ARM-software/optimized-routines Note that for simplicity Arm have chosen to contribute this code to Linux under GPLv2 rather than the original MIT license. Signed-off-by: Sam Tebbs <sam.tebbs@arm.com> [ rm: update attribution and commit message ] Signed-off-by: Robin Murphy <robin.murphy@arm.com> Link: https://lore.kernel.org/r/32e3489398a24b23ae6e996935ac4818f8fd9dfd.1622128527.git.robin.murphy@arm.com Signed-off-by: Will Deacon <will@kernel.org>
- Loading branch information
1 parent
758602c
commit 325a1de
Showing
1 changed file
with
173 additions
and
85 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,115 +1,203 @@ | ||
/* SPDX-License-Identifier: GPL-2.0-only */ | ||
/* | ||
* Copyright (C) 2013 ARM Ltd. | ||
* Copyright (C) 2013 Linaro. | ||
* Copyright (c) 2013, Arm Limited. | ||
* | ||
* This code is based on glibc cortex strings work originally authored by Linaro | ||
* be found @ | ||
* | ||
* http://bazaar.launchpad.net/~linaro-toolchain-dev/cortex-strings/trunk/ | ||
* files/head:/src/aarch64/ | ||
* Adapted from the original at: | ||
* https://github.com/ARM-software/optimized-routines/blob/master/string/aarch64/strlen.S | ||
*/ | ||
|
||
#include <linux/linkage.h> | ||
#include <asm/assembler.h> | ||
|
||
/* | ||
* calculate the length of a string | ||
/* Assumptions: | ||
* | ||
* Parameters: | ||
* x0 - const string pointer | ||
* Returns: | ||
* x0 - the return length of specific string | ||
* ARMv8-a, AArch64, unaligned accesses, min page size 4k. | ||
*/ | ||
|
||
#define L(label) .L ## label | ||
|
||
/* Arguments and results. */ | ||
srcin .req x0 | ||
len .req x0 | ||
#define srcin x0 | ||
#define len x0 | ||
|
||
/* Locals and temporaries. */ | ||
src .req x1 | ||
data1 .req x2 | ||
data2 .req x3 | ||
data2a .req x4 | ||
has_nul1 .req x5 | ||
has_nul2 .req x6 | ||
tmp1 .req x7 | ||
tmp2 .req x8 | ||
tmp3 .req x9 | ||
tmp4 .req x10 | ||
zeroones .req x11 | ||
pos .req x12 | ||
#define src x1 | ||
#define data1 x2 | ||
#define data2 x3 | ||
#define has_nul1 x4 | ||
#define has_nul2 x5 | ||
#define tmp1 x4 | ||
#define tmp2 x5 | ||
#define tmp3 x6 | ||
#define tmp4 x7 | ||
#define zeroones x8 | ||
|
||
/* NUL detection works on the principle that (X - 1) & (~X) & 0x80 | ||
(=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and | ||
can be done in parallel across the entire word. A faster check | ||
(X - 1) & 0x80 is zero for non-NUL ASCII characters, but gives | ||
false hits for characters 129..255. */ | ||
|
||
#define REP8_01 0x0101010101010101 | ||
#define REP8_7f 0x7f7f7f7f7f7f7f7f | ||
#define REP8_80 0x8080808080808080 | ||
|
||
#define MIN_PAGE_SIZE 4096 | ||
|
||
/* Since strings are short on average, we check the first 16 bytes | ||
of the string for a NUL character. In order to do an unaligned ldp | ||
safely we have to do a page cross check first. If there is a NUL | ||
byte we calculate the length from the 2 8-byte words using | ||
conditional select to reduce branch mispredictions (it is unlikely | ||
strlen will be repeatedly called on strings with the same length). | ||
If the string is longer than 16 bytes, we align src so don't need | ||
further page cross checks, and process 32 bytes per iteration | ||
using the fast NUL check. If we encounter non-ASCII characters, | ||
fallback to a second loop using the full NUL check. | ||
If the page cross check fails, we read 16 bytes from an aligned | ||
address, remove any characters before the string, and continue | ||
in the main loop using aligned loads. Since strings crossing a | ||
page in the first 16 bytes are rare (probability of | ||
16/MIN_PAGE_SIZE ~= 0.4%), this case does not need to be optimized. | ||
AArch64 systems have a minimum page size of 4k. We don't bother | ||
checking for larger page sizes - the cost of setting up the correct | ||
page size is just not worth the extra gain from a small reduction in | ||
the cases taking the slow path. Note that we only care about | ||
whether the first fetch, which may be misaligned, crosses a page | ||
boundary. */ | ||
|
||
SYM_FUNC_START_WEAK_PI(strlen) | ||
mov zeroones, #REP8_01 | ||
bic src, srcin, #15 | ||
ands tmp1, srcin, #15 | ||
b.ne .Lmisaligned | ||
/* | ||
* NUL detection works on the principle that (X - 1) & (~X) & 0x80 | ||
* (=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and | ||
* can be done in parallel across the entire word. | ||
*/ | ||
/* | ||
* The inner loop deals with two Dwords at a time. This has a | ||
* slightly higher start-up cost, but we should win quite quickly, | ||
* especially on cores with a high number of issue slots per | ||
* cycle, as we get much better parallelism out of the operations. | ||
*/ | ||
.Lloop: | ||
ldp data1, data2, [src], #16 | ||
.Lrealigned: | ||
and tmp1, srcin, MIN_PAGE_SIZE - 1 | ||
mov zeroones, REP8_01 | ||
cmp tmp1, MIN_PAGE_SIZE - 16 | ||
b.gt L(page_cross) | ||
ldp data1, data2, [srcin] | ||
#ifdef __AARCH64EB__ | ||
/* For big-endian, carry propagation (if the final byte in the | ||
string is 0x01) means we cannot use has_nul1/2 directly. | ||
Since we expect strings to be small and early-exit, | ||
byte-swap the data now so has_null1/2 will be correct. */ | ||
rev data1, data1 | ||
rev data2, data2 | ||
#endif | ||
sub tmp1, data1, zeroones | ||
orr tmp2, data1, #REP8_7f | ||
orr tmp2, data1, REP8_7f | ||
sub tmp3, data2, zeroones | ||
orr tmp4, data2, #REP8_7f | ||
bic has_nul1, tmp1, tmp2 | ||
bics has_nul2, tmp3, tmp4 | ||
ccmp has_nul1, #0, #0, eq /* NZCV = 0000 */ | ||
b.eq .Lloop | ||
orr tmp4, data2, REP8_7f | ||
bics has_nul1, tmp1, tmp2 | ||
bic has_nul2, tmp3, tmp4 | ||
ccmp has_nul2, 0, 0, eq | ||
beq L(main_loop_entry) | ||
|
||
/* Enter with C = has_nul1 == 0. */ | ||
csel has_nul1, has_nul1, has_nul2, cc | ||
mov len, 8 | ||
rev has_nul1, has_nul1 | ||
clz tmp1, has_nul1 | ||
csel len, xzr, len, cc | ||
add len, len, tmp1, lsr 3 | ||
ret | ||
|
||
/* The inner loop processes 32 bytes per iteration and uses the fast | ||
NUL check. If we encounter non-ASCII characters, use a second | ||
loop with the accurate NUL check. */ | ||
.p2align 4 | ||
L(main_loop_entry): | ||
bic src, srcin, 15 | ||
sub src, src, 16 | ||
L(main_loop): | ||
ldp data1, data2, [src, 32]! | ||
L(page_cross_entry): | ||
sub tmp1, data1, zeroones | ||
sub tmp3, data2, zeroones | ||
orr tmp2, tmp1, tmp3 | ||
tst tmp2, zeroones, lsl 7 | ||
bne 1f | ||
ldp data1, data2, [src, 16] | ||
sub tmp1, data1, zeroones | ||
sub tmp3, data2, zeroones | ||
orr tmp2, tmp1, tmp3 | ||
tst tmp2, zeroones, lsl 7 | ||
beq L(main_loop) | ||
add src, src, 16 | ||
1: | ||
/* The fast check failed, so do the slower, accurate NUL check. */ | ||
orr tmp2, data1, REP8_7f | ||
orr tmp4, data2, REP8_7f | ||
bics has_nul1, tmp1, tmp2 | ||
bic has_nul2, tmp3, tmp4 | ||
ccmp has_nul2, 0, 0, eq | ||
beq L(nonascii_loop) | ||
|
||
/* Enter with C = has_nul1 == 0. */ | ||
L(tail): | ||
#ifdef __AARCH64EB__ | ||
/* For big-endian, carry propagation (if the final byte in the | ||
string is 0x01) means we cannot use has_nul1/2 directly. The | ||
easiest way to get the correct byte is to byte-swap the data | ||
and calculate the syndrome a second time. */ | ||
csel data1, data1, data2, cc | ||
rev data1, data1 | ||
sub tmp1, data1, zeroones | ||
orr tmp2, data1, REP8_7f | ||
bic has_nul1, tmp1, tmp2 | ||
#else | ||
csel has_nul1, has_nul1, has_nul2, cc | ||
#endif | ||
sub len, src, srcin | ||
cbz has_nul1, .Lnul_in_data2 | ||
CPU_BE( mov data2, data1 ) /*prepare data to re-calculate the syndrome*/ | ||
sub len, len, #8 | ||
mov has_nul2, has_nul1 | ||
.Lnul_in_data2: | ||
/* | ||
* For big-endian, carry propagation (if the final byte in the | ||
* string is 0x01) means we cannot use has_nul directly. The | ||
* easiest way to get the correct byte is to byte-swap the data | ||
* and calculate the syndrome a second time. | ||
*/ | ||
CPU_BE( rev data2, data2 ) | ||
CPU_BE( sub tmp1, data2, zeroones ) | ||
CPU_BE( orr tmp2, data2, #REP8_7f ) | ||
CPU_BE( bic has_nul2, tmp1, tmp2 ) | ||
|
||
sub len, len, #8 | ||
rev has_nul2, has_nul2 | ||
clz pos, has_nul2 | ||
add len, len, pos, lsr #3 /* Bits to bytes. */ | ||
rev has_nul1, has_nul1 | ||
add tmp2, len, 8 | ||
clz tmp1, has_nul1 | ||
csel len, len, tmp2, cc | ||
add len, len, tmp1, lsr 3 | ||
ret | ||
|
||
.Lmisaligned: | ||
cmp tmp1, #8 | ||
neg tmp1, tmp1 | ||
ldp data1, data2, [src], #16 | ||
lsl tmp1, tmp1, #3 /* Bytes beyond alignment -> bits. */ | ||
mov tmp2, #~0 | ||
/* Big-endian. Early bytes are at MSB. */ | ||
CPU_BE( lsl tmp2, tmp2, tmp1 ) /* Shift (tmp1 & 63). */ | ||
L(nonascii_loop): | ||
ldp data1, data2, [src, 16]! | ||
sub tmp1, data1, zeroones | ||
orr tmp2, data1, REP8_7f | ||
sub tmp3, data2, zeroones | ||
orr tmp4, data2, REP8_7f | ||
bics has_nul1, tmp1, tmp2 | ||
bic has_nul2, tmp3, tmp4 | ||
ccmp has_nul2, 0, 0, eq | ||
bne L(tail) | ||
ldp data1, data2, [src, 16]! | ||
sub tmp1, data1, zeroones | ||
orr tmp2, data1, REP8_7f | ||
sub tmp3, data2, zeroones | ||
orr tmp4, data2, REP8_7f | ||
bics has_nul1, tmp1, tmp2 | ||
bic has_nul2, tmp3, tmp4 | ||
ccmp has_nul2, 0, 0, eq | ||
beq L(nonascii_loop) | ||
b L(tail) | ||
|
||
/* Load 16 bytes from [srcin & ~15] and force the bytes that precede | ||
srcin to 0x7f, so we ignore any NUL bytes before the string. | ||
Then continue in the aligned loop. */ | ||
L(page_cross): | ||
bic src, srcin, 15 | ||
ldp data1, data2, [src] | ||
lsl tmp1, srcin, 3 | ||
mov tmp4, -1 | ||
#ifdef __AARCH64EB__ | ||
/* Big-endian. Early bytes are at MSB. */ | ||
lsr tmp1, tmp4, tmp1 /* Shift (tmp1 & 63). */ | ||
#else | ||
/* Little-endian. Early bytes are at LSB. */ | ||
CPU_LE( lsr tmp2, tmp2, tmp1 ) /* Shift (tmp1 & 63). */ | ||
lsl tmp1, tmp4, tmp1 /* Shift (tmp1 & 63). */ | ||
#endif | ||
orr tmp1, tmp1, REP8_80 | ||
orn data1, data1, tmp1 | ||
orn tmp2, data2, tmp1 | ||
tst srcin, 8 | ||
csel data1, data1, tmp4, eq | ||
csel data2, data2, tmp2, eq | ||
b L(page_cross_entry) | ||
|
||
orr data1, data1, tmp2 | ||
orr data2a, data2, tmp2 | ||
csinv data1, data1, xzr, le | ||
csel data2, data2, data2a, le | ||
b .Lrealigned | ||
SYM_FUNC_END_PI(strlen) | ||
EXPORT_SYMBOL_NOKASAN(strlen) |