Skip to content

Traffic sign classification Web App (Python, Flask)

Notifications You must be signed in to change notification settings

ernurator/ML-Final-2022

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Traffic sign classification web app

Implemented CNN for traffic sign classification using keras (link to Google Colab notebook). Dataset on which the model was trained.

The model recognizes following traffic sign classes:

  1. Speed limit [20]
  2. Speed limit [30]
  3. Speed limit [50]
  4. Speed limit [60]
  5. Speed limit [70]
  6. Speed limit [80]
  7. End of speed limit [80]
  8. Speed limit [100]
  9. Speed limit [120]
  10. No passing
  11. No trucks passing
  12. Right-of-way at intersection
  13. Priority road
  14. Yield
  15. Stop
  16. No vehicles
  17. No trucks
  18. No entry
  19. General caution
  20. Dangerous curve left
  21. Dangerous curve right
  22. Double curve
  23. Bumpy road
  24. Slippery road
  25. Road narrows on the right
  26. Road work
  27. Traffic signals
  28. Pedestrians
  29. Children crossing
  30. Bicycles crossing
  31. Beware of ice/snow
  32. Wild animals crossing
  33. Speed and passing limits end
  34. Turn right ahead
  35. Turn left ahead
  36. Ahead only
  37. Go straight or right
  38. Go straight or left
  39. Keep right
  40. Keep left
  41. Roundabout
  42. End of no passing
  43. End of no passing trucks

How to run locally

# Cloning the repository
git clone https://github.com/ernurator/ML-Final-2022
cd ML-Final-2022

# Skip if virtualenv is installed
python3 -m pip install virtualenv

# Create virtual env
python3 -m virtualenv .venv
source .venv/bin/activate  # for Linux & MacOS

# Install all required libraries
pip install -r requirements.txt

# Run the web app
flask run
# Then open http://127.0.0.1:5000 in browser

About

Traffic sign classification Web App (Python, Flask)

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published