Skip to content
forked from mcfit/idl_emcee

The IDL implementation of the affine-invariant MCMC Hammer

License

Notifications You must be signed in to change notification settings

equib/idl_emcee

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

58 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

idl_emcee

Build Status Build Status Binder GitHub license Zenodo

The IDL implementation of the affine-invariant MCMC Hammer

Description

idl_emcee is an Interactive Data Language (IDL)/GNU Data Language (GDL) implementation of the affine-invariant Markov chain Monte Carlo (MCMC) ensemble sampler, based on sl_emcee by M. A. Nowak, an S-Lang/ISIS implementation of the MCMC Hammer proposed by Goodman & Weare (2010), and then implemented in Python (emcee) by Foreman-Mackey et al. (2013).

Installation

  • To get this package, you can simply use git command as follows:
git clone --recursive https://github.com/mcfit/idl_emcee.git
  • This package does not include any dependent packages in the current version.

Installation in IDL

  • To install the idl_emcee IDL library in the Interactive Data Language (IDL), you need to add the path of this package directory to your IDL path. For more information about the path management in IDL, read the tips for customizing IDL program path provided by Harris Geospatial Solutions or the IDL library installation note by David Fanning in the Coyote IDL Library.
  • This package requires IDL version 7.1 or later.

Installation in GDL

  • You can install the GNU Data Language (GDL) if you do not have it on your machine:

    • Linux (Fedora):
    sudo dnf install gdl
    
    • Linux (Ubuntu):
    sudo apt-get install gnudatalanguage
    
    brew tap brewsci/science
    brew install gnudatalanguage
    
    sudo port selfupdate
    sudo port upgrade libtool
    sudo port install gnudatalanguage
    
  • To install the idl_emcee library in GDL, you need to add the path of this package directory to your .gdl_startup file in your home directory:

    !PATH=!PATH + ':/home/idl_emcee/pro/'
    

    You may also need to set GDL_STARTUP if you have not done in .bashrc (bash):

    export GDL_STARTUP=~/.gdl_startup
    

    or in .tcshrc (cshrc):

    setenv GDL_STARTUP ~/.gdl_startup
    
  • This package requires GDL version 0.9.9 or later.

How to Use

The Documentation of the IDL functions provides in detail in the API Documentation (mcfit.github.io/idl_emcee/doc). This IDL library creates the MCMC sampling for given upper and lower uncertainties, and propagates uncertainties of parameters into the function.

See Jupyter Notebook: Notebook.ipynb

Run Jupyter Notebook on Binder:

You need to define your function. For example:

function myfunc1, input
  result1 = total(input)
  result2 = input[1]^input[0]
  return, [result1, result2]
end

and use the appropriate confidence level and uncertainty distribution. For example, for a 1.645-sigma standard deviation with a uniform distribution:

clevel=.9; 1.645-sigma
use_gaussian=0 ; uniform distribution from min value to max value

for a 1-sigma standard deviation with a Gaussian distribution:

clevel=0.68268949 ; 1.0-sigma
use_gaussian=1 ; gaussian distribution from min value to max value

and specify the number of walkers and the number of iterations:

walk_num=30
iteration_num=100

Now you provide the given upper and lower uncertainties of the input parameters:

input=[1. , 2.]
input_err=[0.2, 0.5]
input_err_p=input_err
input_err_m=-input_err
output=myfunc1(input)
temp=size(output,/DIMENSIONS)
output_num=temp[0]

You can create the MCMC sample and propagate the uncertainties of the input parameters into your defined functions as follows:

mcmc_sim=emcee_hammer('myfunc1', input, input_err_m, $
                      input_err_p, output, walk_num, $
                      iteration_num, use_gaussian)

To determine the upper and lower errors of the function outputs, you need to run:

output_error=emcee_find_errors(output, mcmc_sim, clevel, do_plot=1)

Alternatively, you could load the emcee object class as follows:

mc=obj_new('emcee')
mcmc_sim=mc->hammer('myfunc1', input, input_err_m, $
                    input_err_p, output, walk_num=walk_num, $
                    iteration_num=iteration_num, $
                    use_gaussian=use_gaussian)
output_error=mc->find_errors(output, mcmc_sim, clevel=clevel, do_plot=1)

which shows the following distribution histograms:

https://raw.githubusercontent.com/mcfit/idl_emcee/master/examples/images/histogram0.jpg

https://raw.githubusercontent.com/mcfit/idl_emcee/master/examples/images/histogram1.jpg

To print the results:

for i=0, output_num-1 do begin
  print, output[i], transpose(output_error[i,*])
endfor

which provide the upper and lower limits on each parameter:

3.00000     -0.35801017      0.35998471
2.00000     -0.37573196      0.36297235

For other standard deviation, you should use different confidence levels:

clevel=0.38292492 ; 0.5-sigma
clevel=0.68268949 ; 1.0-sigma
clevel=0.86638560 ; 1.5-sigma
clevel=0.90       ; 1.645-sigma
clevel=0.95       ; 1.960-sigma
clevel=0.95449974 ; 2.0-sigma
clevel=0.98758067 ; 2.5-sigma
clevel=0.99       ; 2.575-sigma
clevel=0.99730020 ; 3.0-sigma
clevel=0.99953474 ; 3.5-sigma
clevel=0.99993666 ; 4.0-sigma
clevel=0.99999320 ; 4.5-sigma
clevel=0.99999943 ; 5.0-sigma
clevel=0.99999996 ; 5.5-sigma
clevel=0.999999998; 6.0-sigma

Documentation

For more information on how to use the API functions from the idl_emcee libray, please read the API Documentation published on mcfit.github.io/idl_emcee.

Learn More

Documentation https://mcfit.github.io/idl_emcee/doc/
Repository https://github.com/mcfit/idl_emcee
Issues & Ideas https://github.com/mcfit/idl_emcee/issues
Archive 10.5281/zenodo.4495897

About

The IDL implementation of the affine-invariant MCMC Hammer

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • IDL 70.8%
  • Python 18.6%
  • Jupyter Notebook 10.4%
  • Shell 0.2%