Skip to content

(ROS, C++) YOLOv9 detection using TensorRT, now supporting TensorRT 10

License

Notifications You must be signed in to change notification settings

engcang/TensorRT_YOLOv9_ROS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

14 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

TensorRT-YOLOv9-ROS

  • ROS version of YOLOv9 accelerated with TensorRT API
  • This repository is a merely re-implementation with ROS of the:
    • πŸ‘ TensorRT-YOLOv9-C++, which is based on
      • YOLOv9 - YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information.
      • TensorRT - TensorRT samples and api documentation.
      • TensorRTx - Implementation of popular deep learning networks with TensorRT network definition API.
mot17.mp4

Known issues / notes

  • The resolution of image to be trained should be multiplication of 64
  • [2024-05-12] - Now supporting TensorRT >= 10
  • Check the paths of TensorRT in CMakeLists.txt's line 25, 26

Dependencies

  • ROS (currently supporting only ROS1)
  • C++ >= 17
  • cmake >= 3.14
  • OpenCV >= 4.2
  • TensorRT, CUDA, cuDNN
    • .engine file generated with TensorRT
  • Tested versions:
    • Desktop with i9-10900k, RTX 3080 - CUDA 11.5, cuDNN 8.3.2.44, TensorRT 8.4.0.6

You may want to:

β–  Unfold here to see how to install CUDA, cuDNN and TensorRT

● Note that apt install with deb is preferred to run file and source file build for both of CUDA and cuDNN

gedit ~/.bashrc
*** Type and save below, CUDA_PATH should be like /usr/local/cuda-11.5, depending on your version ***
export PATH=CUDA_PATH/bin:$PATH 
export LD_LIBRARY_PATH=CUDA_PATH/lib64:$LD_LIBRARY_PATH

. ~/.bashrc

gedit ~/.profile
*** Type and save below, CUDA_PATH should be like /usr/local/cuda-11.5, depending on your version ***
export PATH=CUDA_PATH/bin:$PATH 
export LD_LIBRARY_PATH=CUDA_PATH/lib64:$LD_LIBRARY_PATH

. ~/.profile
  • Verify, if installed properly
# Verify
dpkg -l | grep cuda
dpkg -l | grep cudnn
nvcc --version

● Note that apt install with deb is preferred to other methods for TensorRT


β–  Unfold here to see how to train custom data / generate TensorRT engine file with safe Python3 virtual environment

● Common step for training / engine file

  1. Make sure that you have installed all dependencies properly.
  • Particularly, you should install full packages of TensorRT: tensorrt, python3-libnvinfer-dev, onnx-graphsurgeon
  1. Install and make Python3 virtual env
python3 -m pip install virtualenv virtualenvwrapper
cd <PATH YOU WANT TO SAVE VIRTUAL ENVIRONMENT>
virtualenv -p python3 <NAME YOU WANT>

*** Now you can activate with
source <PATH YOU SAVED>/<NAME YOU WANT>/bin/activate

*** Deactivate with
deactivate
  1. (While virtual env being activated), clone YOLOv9 repo and install requirements
git clone https://github.com/WongKinYiu/yolov9
cd yolov9
pip install -r requirements.txt

● Converting .pt to .onnx, and then .engine

  1. (While virtual env being activated)
  2. Get trained YOLOv9 weight file as .pt by training your own data or downloading the pre-trained model at here - https://github.com/WongKinYiu/yolov9/releases
  3. Reparameterize the .pt file (saving computation, memory, and size by trimming unnecessary parts for inference but necessary only for training)
cd yolov9 # cloned at above step
wget https://raw.githubusercontent.com/engcang/TensorRT_YOLOv9_ROS/main/reparameterize.py

*** Change the number of classes in the reparameterize.py in line 8 (nc=80)
python reparameterize.py yolov9-c.pt yolov9-c-reparameterized.pt # input.pt output.put
  1. Export .pt file as .onnx
python export.py --weights yolov9-c-reparameterized.pt --include onnx
  1. Then .onnx to .engine
/usr/src/tensorrt/bin/trtexec --onnx=yolov9-c-reparameterized.onnx --saveEngine=yolov9-c.engine
#for faster, less accurate
/usr/src/tensorrt/bin/trtexec --onnx=yolov9-c-reparameterized.onnx --saveEngine=yolov9-c-fp16.engine --fp16
#not recommended - much faster, much less accurate
/usr/src/tensorrt/bin/trtexec --onnx=yolov9-c-reparameterized.onnx --saveEngine=yolov9-c-int8.engine --int8

● Training your own data

  1. (While virtual env being activated) + YOLOv9 is cloned already, requirements are installed already
  2. Prepare data and labels in YOLO format.
  1. Make proper data.yaml file by copying and editing yolov9/data/coco.yaml as follows:
path: training  # dataset root dir (relative from train.py file)
train: train    # train images folder (relative to 'path')
val: val        # val images folder (relative to 'path')
test: test      # test images folder (relative to 'path')

# Classes
names:
  0: Transmission tower
  1: Insulator
  1. Make proper yolov9.yaml file by copying and editing yolov9/models/detect/yolov9.yaml or yolov9-c, yolov9-e, etc.
# parameters
nc: 2  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
#activation: nn.LeakyReLU(0.1)
#activation: nn.ReLU()

# anchors
anchors: 3

# YOLOv9 backbone
backbone:
  [
   [-1, 1, Silence, []],  
   
   # conv down
   [-1, 1, Conv, [64, 3, 2]],  # 1-P1/2
   
   ...
  ]
  1. Edit learning parameters by editing yolov9/data/hyps/hyp.scratch-high.yaml
  2. Put all of files properly in the yolov9 folder. If outside the yolov9 folder, error occurs!
yolov9
β”‚  ...
β”œβ”€ data # Reference folder
β”‚  β”œβ”€ coco.yaml
β”‚  └─ hyps
β”‚     └─ hyp.scratch-high.yaml
β”œβ”€ models # Reference folder
β”‚  ...
β”‚  β”œβ”€ detect
β”‚  ...
β”‚  β”‚  β”œβ”€ yolov9-c.yaml
β”‚  β”‚  β”œβ”€ yolov9-e.yaml
β”‚  β”‚  └─ yolov9.yaml
β”œβ”€ runs # Output saved folder
β”‚  ...
β”œβ”€ train.py # Using this file for GELAN
β”œβ”€ train_dual.py # Using this file for YOLOv9
β”œβ”€ training # Using this folder
β”‚  β”œβ”€ yolov9-c.pt
β”‚  β”œβ”€ data.yaml
β”‚  β”œβ”€ yolov9.yaml
β”‚  β”œβ”€ test
β”‚  β”‚  β”œβ”€ 02001.jpg
β”‚  β”‚  β”œβ”€ 02001.txt
β”‚  β”‚  └─ ...
β”‚  β”œβ”€ train
β”‚  β”‚  β”œβ”€ 00001.jpg
β”‚  β”‚  β”œβ”€ 00001.txt
β”‚  β”‚  └─ ...
β”‚  β”œβ”€ val
β”‚  β”‚  β”œβ”€ 04000.jpg
β”‚  β”‚  β”œβ”€ 04000.txt
β”‚  β”‚  └─ ...
└─ └─ ...
  1. Train
cd yolov9

*** Using pretrained model (yolov9-c.pt here), fine-tuning:
python train_dual.py --batch-size 4 --epochs 100 --img 640 --device 0 --close-mosaic 15 \
--data training/data.yaml --weights training/yolov9-c.pt --cfg training/yolov9.yaml --hyp data/hyps/hyp.scratch-high.yaml

*** From the scratch:
python train_dual.py --batch-size 4 --epochs 100 --img 640 --device 0 --close-mosaic 15 \
--data training/data.yaml --weights '' --cfg training/yolov9.yaml --hyp data/hyps/hyp.scratch-high.yaml

● Trouble shooting for training

  1. (While virtual env being activated)
  2. AttributeError: 'FreeTypeFont' object has no attribute 'getsize'
  • This is because installed Pillow version is too recent.
  • Solve with pip install Pillow==9.5.0
  1. Getting Killed and does not train
  • Lack of memory, reduce batch-size a lot
  1. AssertionError: Invalid CUDA '--device 0' requested, use '--device cpu' or pass valid CUDA device(s)
  • This is because installed torch and torchvision are not CUDA versions.
  • Solve as:
*** Check the version at https://download.pytorch.org/whl/torch_stable.html
*** torch >= 1.7.0, torchvision>=0.8.1

pip install torch==1.11.0+cu115 torchvision==0.12.0+cu115 -f https://download.pytorch.org/whl/torch_stable.html
  1. RuntimeError: CUDA out of memory. Tried to allocate 50.00 MiB (GPU 0; 9.76 GiB total capacity; 6.68 GiB already allocated; 45.00 MiB free; 6.82 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
  • Lack of memory, reduce batch-size a lot

How to install

  • Make sure you have installed all of dependencies properly
  • Clone this repository (Check the paths of TensorRT in CMakeLists.txt) and build
cd ~/<your_workspace>/src
git clone https://github.com/engcang/TensorRT_YOLOv9_ROS.git

*** Check the paths of TensorRT in CMakeLists.txt ***
cd ~/<your_workspace>
catkin build -DCMAKE_BUILD_TYPE=Release

How to use

  • Check the paths of files, params in config/config.yaml
  • Then run
roslaunch tensorrt_yolov9_ros run.launch

You may also want to see

  • tkdnn-ros: YOLO (v3, v4, v7) accelerated with TensorRT using tkdnn