Skip to content

eecoder-dyf/Diffusion-Detection-WCSP2023

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Diffusion-Generated Fake Face Detection by Exploring Wavelet Domain Forgery Clues

This is the official repository of "Diffusion-Generated Fake Face Detection by Exploring Wavelet Domain Forgery Clues" (WCSP 2023)

Dependencies

  • Pytorch ≥ 1.10 with CUDA ≥ 11.3
  • tensorboard
  • opencv-python
  • timm
  • pyyaml
  • tqdm

Dataset and Pretrained Models

Dropbox 北航云盘 (提取码:wcsp)

  • Dataset: Please unzip the downloaded datasets and put them in one folder, for example:
- /mnt/data/diffusion_detection
    - celeba_hq_256
        - test
        - train
        - val
    - wavediff_celeba256
        - ...
    - ddpm_celeba256_1000
        - ...
  • Weights: put them in ./weights folder.

Start

  • Training
python -W ignore main.py --folder /mnt/data/diffusion_detection --cuda 0 --batch-size 64 --save --mask True --fake ddpm_celeba256_1000 --weights ours_ddpm.pth.tar --config config/test.yaml
  • Testing
python run_robust.py

parameters to modify:

  • --fake To modify fake dataset;
  • --cuda To modify gpu id e.g. --cuda 0 for one gpu, --cuda 0 1 for two gpus;
  • --weights To modify the saving weights file name during training and testing.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages