Skip to content

Commit

Permalink
[gym/common] Add average odometry velocity quantity.
Browse files Browse the repository at this point in the history
  • Loading branch information
duburcqa committed May 3, 2024
1 parent e3a307a commit e0b87cb
Show file tree
Hide file tree
Showing 10 changed files with 265 additions and 41 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -224,7 +224,7 @@ def __init__(self,
env: InterfaceJiminyEnv,
parent: Optional["AbstractQuantity"],
requirements: Dict[str, "QuantityCreator"],
auto_refresh: bool) -> None:
auto_refresh: bool = False) -> None:
"""
:param env: Base or wrapped jiminy environment.
:param parent: Higher-level quantity from which this quantity is a
Expand Down
3 changes: 3 additions & 0 deletions python/gym_jiminy/common/gym_jiminy/common/bases/reward.py
Original file line number Diff line number Diff line change
Expand Up @@ -128,6 +128,9 @@ def __init__(self,
# Add quantity to the set of quantities managed by the environment
self.env.quantities[self.name] = quantity

# Keep track of the underlying quantity
self.quantity = self.env.quantities.registry[self.name]

@property
def name(self) -> str:
"""Name uniquely identifying every reward. It will be used to add the
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,9 @@
StackedQuantity,
AverageFrameSpatialVelocity,
MaskedQuantity)
from .locomotion import CenterOfMass, ZeroMomentPoint
from .locomotion import (AverageOdometryVelocity,
CenterOfMass,
ZeroMomentPoint)


__all__ = [
Expand All @@ -16,6 +18,7 @@
'StackedQuantity',
'AverageFrameSpatialVelocity',
'MaskedQuantity',
'AverageOdometryVelocity',
'CenterOfMass',
'ZeroMomentPoint',
]
81 changes: 53 additions & 28 deletions python/gym_jiminy/common/gym_jiminy/common/quantities/generic.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,8 +7,9 @@
from functools import partial
from dataclasses import dataclass
from typing import (
List, Dict, Set, Optional, Protocol, Sequence, Tuple, TypeVar, Union,
List, Dict, Set, Any, Optional, Protocol, Sequence, Tuple, TypeVar, Union,
runtime_checkable)
from typing_extensions import TypeAlias

import numpy as np

Expand All @@ -17,9 +18,13 @@
import pinocchio as pin

from ..bases import InterfaceJiminyEnv, AbstractQuantity, QuantityCreator
from ..utils import fill, matrix_to_rpy, matrix_to_quat
from ..utils import (
fill, matrix_to_rpy, matrix_to_quat, quat_to_matrix,
quat_interpolate_middle)


EllipsisType: TypeAlias = Any # TODO: `EllipsisType` introduced in Python 3.10

ValueT = TypeVar('ValueT')


Expand Down Expand Up @@ -515,12 +520,19 @@ class AverageFrameSpatialVelocity(AbstractQuantity[np.ndarray]):
The average spatial velocity is obtained by finite difference. More
precisely, it is defined here as the ratio of the geodesic distance in SE3
Lie group between the pose of the frame at the end of previous and current
Lie Group between the pose of the frame at the end of previous and current
step over the time difference between them. Notably, under this definition,
the linear average velocity jointly depends on rate of change of the
translation and rotation of the frame, which may be undesirable in some
cases. Alternatively, the double geodesic distance could be used instead to
completely decouple the translation from the rotation.
.. note::
The local frame for which the velocity is expressed is defined as the
midpoint interpolation between the previous and current frame pose.
This definition is arbitrary, in a sense that any other point for an
interpolation ratio going from 0.0 (previous pose) to 1.0 (current
pose) would be equally valid.
"""

frame_name: str
Expand Down Expand Up @@ -574,8 +586,9 @@ def __init__(self,
# Inverse step size
self._inv_step_dt = 0.0

# Define proxy to the current frame pose (translation, rotation matrix)
self._rot_mat = np.eye(3)
# Allocate memory for the average quaternion and rotation matrix
self._quat_mean = np.zeros(4)
self._rot_mat_mean = np.eye(3)

# Pre-allocate memory for the spatial velocity
self._v_spatial: np.ndarray = np.zeros(6)
Expand All @@ -590,11 +603,6 @@ def initialize(self) -> None:
# Compute inverse step size
self._inv_step_dt = 1.0 / self.env.step_dt

# Refresh proxy to current frame pose
frame_index = self.pinocchio_model.getFrameId(self.frame_name)
transform = self.pinocchio_data.oMf[frame_index]
self._rot_mat = transform.rotation

# Re-initialize pre-allocated buffers
fill(self._v_spatial, 0)

Expand All @@ -612,8 +620,17 @@ def refresh(self) -> np.ndarray:

# Translate local velocity to world frame
if self.reference_frame == pin.LOCAL_WORLD_ALIGNED:
# Define world frame as the "middle" between prev and next pose.
# The orientation difference has an effect on the translation
# difference, but not the other way around. Here, we only care
# about the middle rotation, so we can consider SO3 Lie Group
# algebra instead of SE3.
quat_interpolate_middle(
xyzquat_prev[-4:], xyzquat[-4:], self._quat_mean)
quat_to_matrix(self._quat_mean, self._rot_mat_mean)

# TODO: x2 speedup can be expected using `np.dot` with `nb.jit`
self._v_lin_ang[:] = self._rot_mat @ self._v_lin_ang
self._v_lin_ang[:] = self._rot_mat_mean @ self._v_lin_ang

return self._v_spatial

Expand All @@ -624,14 +641,16 @@ class MaskedQuantity(AbstractQuantity[np.ndarray]):
array along an axis.
Elements will be extract by copy unless the indices of the elements to
extract to be written equivalently by a slice, ie they are evenly spaced.
extract to be written equivalently by a slice (ie they are evenly spaced),
and the array can be flattened while preserving memory contiguity if 'axis'
is `None`.
"""

quantity: AbstractQuantity
"""Base quantity whose elements must be extracted.
"""

indices: Tuple[int]
indices: Tuple[int, ...]
"""Indices of the elements to extract.
"""

Expand All @@ -643,7 +662,7 @@ def __init__(self,
env: InterfaceJiminyEnv,
parent: Optional[AbstractQuantity],
quantity: QuantityCreator[np.ndarray],
key: Union[Sequence[int], Sequence[bool], slice],
key: Union[Sequence[int], Sequence[bool]],
axis: Optional[int] = None
) -> None:
"""
Expand All @@ -653,17 +672,15 @@ def __init__(self,
:param quantity: Tuple gathering the class of the quantity whose values
must be extracted, plus all its constructor keyword-
arguments except environment 'env' and parent 'parent.
:param key: Sequence of indices, boolean mask, or slice that will be
used to extract elements from the quantity along one axis.
:param key: Sequence of indices or boolean mask that will be used to
extract elements from the quantity along one axis.
:param axis: Axis over which to extract elements. `None` to consider
flattened array.
Optional: `None` by default.
"""
# Check if a slice, indices or a mask has been provided
if key is slice:
pass
elif all(isinstance(e, bool) for e in key):
key, _ = np.nonzero(key)
# Check if indices or boolean mask has been provided
if all(isinstance(e, bool) for e in key):
key = tuple(np.flatnonzero(key))
elif not all(isinstance(e, int) for e in key):
raise ValueError(
"Argument 'key' invalid. It must either be a "
Expand All @@ -679,19 +696,23 @@ def __init__(self,
"No indices to extract from quantity. Data would be empty.")

# Check if the indices are evenly spaced
self._slices: Optional[slice] = None
self._slices: Tuple[Union[slice, EllipsisType], ...] = ()
stride: Optional[int] = None
if len(self.indices) == 1:
stride = 1
if len(self.indices) > 1:
if len(self.indices) > 1 and all(e >= 0 for e in self.indices):
spacing = np.unique(np.diff(self.indices))
stride = stride[0] if spacing.size == 1 else None
if spacing.size == 1:
stride = spacing[0]
if stride is not None:
slice_ = slice(self.indices[0], self.indices[-1] + 1, stride)
if axis > 0:
self._slices = (slice(None),) * axis + (slice_,)
if axis is None:
self._slices = (slice_,)
elif axis > 0:
self._slices = (*((slice(None),) * axis), slice_)
else:
self._slices = (
Ellipsis, slice_) + (slice(None),) * (- axis - 1)
Ellipsis, slice_, *((slice(None),) * (- axis - 1)))

# Call base implementation
super(). __init__(env,
Expand All @@ -708,9 +729,13 @@ def initialize(self) -> None:

def refresh(self) -> np.ndarray:
# Extract elements from quantity
if self._slices is None:
if not self._slices:
# Note that `take` is faster than classical advanced indexing via
# `operator[]` (`__getitem__`) because the latter is more generic.
# Notably, `operator[]` supports boolean mask but `take` does not.
return self.data.take(self.indices, axis=self.axis)
if self.axis is None:
# `reshape` must be used instead of `flat` to get a view that can
# be sliced without copy.
return self.data.reshape((-1,))[self._slices]
return self.data[self._slices]
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,44 @@
from ..bases import InterfaceJiminyEnv, AbstractQuantity
from ..utils import fill

from ..quantities import MaskedQuantity, AverageFrameSpatialVelocity


@dataclass(unsafe_hash=True)
class AverageOdometryVelocity(AbstractQuantity[np.ndarray]):
"""Average odometry velocity in local-world-aligned frame at the end of the
agent step.
The odometry pose fully specifies the position of the robot in 2D world
plane. As such, it comprises the linear translation (X, Y) and the angular
velocity around Z axis (namely rate of change of Yaw Euler angle). The
average spatial velocity is obtained by finite difference. See
`AverageFrameSpatialVelocity` documentation for details.
"""

def __init__(self,
env: InterfaceJiminyEnv,
parent: Optional[AbstractQuantity]) -> None:
"""
:param env: Base or wrapped jiminy environment.
:param parent: Higher-level quantity from which this quantity is a
requirement if any, `None` otherwise.
"""
# Call base implementation
super().__init__(
env,
parent,
requirements=dict(
data=(MaskedQuantity, dict(
quantity=(AverageFrameSpatialVelocity, dict(
frame_name="root_joint",
reference_frame=pin.LOCAL_WORLD_ALIGNED)),
key=(0, 1, 5)))),
auto_refresh=False)

def refresh(self) -> np.ndarray:
return self.data


@dataclass(unsafe_hash=True)
class CenterOfMass(AbstractQuantity[np.ndarray]):
Expand Down
46 changes: 36 additions & 10 deletions python/gym_jiminy/common/gym_jiminy/common/rewards/locomotion.py
Original file line number Diff line number Diff line change
@@ -1,39 +1,65 @@

"""Rewards mainly relevant for locomotion tasks on floating-base robots.
"""
from typing import Sequence

import numpy as np

from ..bases import InterfaceJiminyEnv, BaseQuantityReward
from ..quantities import MaskedQuantity, AverageFrameSpatialVelocity
from ..quantities import AverageOdometryVelocity

from .generic import radial_basis_function


class OdometryVelocityReward(BaseQuantityReward):
""" TODO: Write documentation.
"""Reward the agent for tracking a non-stationary target odometry velocity.
The error transform in a normalized reward to maximize by applying RBF
kernel on the error. The reward will be 0.0 if the error cancels out
completely and less than 0.01 above the user-specified cutoff threshold.
"""
def __init__(self,
env: InterfaceJiminyEnv,
target: Sequence[float],
cutoff: float) -> None:
""" TODO: Write documentation.
"""
:param target: Initial target average odometry velocity (vX, vY, vYaw).
The target can be updated in necessary by calling
`set_target`.
:param cutoff: Cutoff threshold for the RBF kernel transform.
"""
# Backup some user argument(s)
self.target = target
self._target = np.asarray(target)
self.cutoff = cutoff

# Call base implementation
super().__init__(
env,
"reward_odometry_velocity",
(MaskedQuantity, dict(
quantity=(AverageFrameSpatialVelocity, dict(frame_name="root_joint")),
key=(0, 1, 5))),
(AverageOdometryVelocity, {}),
self._transform,
is_normalized=True,
is_terminal=False)

def _transform(self, value: np.ndarray) -> np.ndarray:
""" TODO: Write documentation.
@property
def target(self) -> np.ndarray:
"""Get current target odometry velocity.
"""
return self._target

@target.setter
def target(self, target: Sequence[float]) -> None:
"""Set current target odometry velocity.
"""
self._target = np.asarray(target)

def _transform(self, value: np.ndarray) -> float:
"""Apply Radial Base Function transform to the residual error between
the current and target average odometry velocity.
.. note::
The user must call `set_target` method before `compute_reward` to
update the target odometry velocity if non-stationary.
:param value: Current average odometry velocity.
"""
return radial_basis_function(value - self.target, self.cutoff)
2 changes: 2 additions & 0 deletions python/gym_jiminy/common/gym_jiminy/common/utils/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@
quat_to_yaw_cos_sin,
quat_multiply,
quat_average,
quat_interpolate_middle,
rpy_to_matrix,
rpy_to_quat,
transforms_to_vector,
Expand Down Expand Up @@ -55,6 +56,7 @@
'quat_to_yaw_cos_sin',
'quat_multiply',
'quat_average',
'quat_interpolate_middle',
'rpy_to_matrix',
'rpy_to_quat',
'transforms_to_vector',
Expand Down
35 changes: 35 additions & 0 deletions python/gym_jiminy/common/gym_jiminy/common/utils/math.py
Original file line number Diff line number Diff line change
Expand Up @@ -522,3 +522,38 @@ def quat_average(quat: np.ndarray,
q_flat = q_perm.reshape((*q_perm.shape[:-len(axis)], -1))
_, eigvec = np.linalg.eigh(q_flat @ np.swapaxes(q_flat, -1, -2))
return np.moveaxis(eigvec[..., -1], -1, 0)


@nb.jit(nopython=True, cache=True, fastmath=True)
def quat_interpolate_middle(quat1: np.ndarray,
quat2: np.ndarray,
out: Optional[np.ndarray] = None) -> np.ndarray:
"""Compute the midpoint interpolation between two batches of quaternions
[qx, qy, qz, qw].
The midpoint interpolation of two quaternion is defined as the integration
of half the difference between them, starting from the first one, ie
`q_mid = integrate(q1, 0.5 * difference(q1, d2))`, which is a special case
of the `slerp` method (spherical linear interpolation) for `alpha=0.5`.
For the midpoint in particular, one can show that the middle quaternion is
simply normalized sum of the previous and next quaternions.
:param quat1: First batch of quaternions as a N-dimensional array whose
first dimension gathers the 4 quaternion coordinates.
:param quat2: Second batch of quaternions as a N-dimensional array.
:param out: A pre-allocated array into which the result is stored. If not
provided, a new array is freshly-allocated, which is slower.
"""
assert quat1.ndim >= 1 and quat1.shape == quat2.shape
if out is None:
out_ = np.empty((4, *quat1.shape[1:]))
else:
assert out.shape == (4, *quat1.shape[1:])
out_ = out

dot = np.sum(quat1 * quat2, axis=0)
dot_ = dot if quat1.ndim == 1 else np.expand_dims(dot, axis=0)
out_[:] = (quat1 + np.sign(dot_) * quat2) / np.sqrt(2 * (1 + np.abs(dot_)))

return out_
Loading

0 comments on commit e0b87cb

Please sign in to comment.