-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
10 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,5 +1,7 @@ | ||
# CyFi changelog | ||
|
||
### v0.1.0 - 2023-xx-xx | ||
### v1.0.0 - 2023-10-10 | ||
|
||
CyFi is a command line tool that uses satellite imagery and machine learning to estimate cyanobacteria levels in small, inland water bodies. | ||
|
||
CyFi has its origins in the [Tick Tick Bloom](https://www.drivendata.org/competitions/143/tick-tick-bloom/) machine learning competition, hosted by DrivenData and created on behalf of [NASA](https://www.nasa.gov/). The goal in that challenge was to detect and classify the severity of cyanobacteria blooms in small, inland water bodies using publicly available satellite, climate, and elevation data. Labels were based on "in situ" samples that were collected manually by [many organizations](https://www.drivendata.org/competitions/143/tick-tick-bloom/page/651/#about-the-project-team) across the U.S. The model in CyFi is based on the [winning solutions](https://github.com/drivendataorg/tick-tick-bloom) from that challenge, and has been optimized for generalizability and efficiency. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
from cyfi.version import __version__ | ||
|
||
__version__ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,5 +1,7 @@ | ||
# CyFi changelog | ||
|
||
### v0.1.0 - 2023-xx-xx | ||
### v1.0.0 - 2023-10-10 | ||
|
||
CyFi is a command line tool that uses satellite imagery and machine learning to estimate cyanobacteria levels in small, inland water bodies. | ||
|
||
CyFi has its origins in the [Tick Tick Bloom](https://www.drivendata.org/competitions/143/tick-tick-bloom/) machine learning competition, hosted by DrivenData and created on behalf of [NASA](https://www.nasa.gov/). The goal in that challenge was to detect and classify the severity of cyanobacteria blooms in small, inland water bodies using publicly available satellite, climate, and elevation data. Labels were based on "in situ" samples that were collected manually by [many organizations](https://www.drivendata.org/competitions/143/tick-tick-bloom/page/651/#about-the-project-team) across the U.S. The model in CyFi is based on the [winning solutions](https://github.com/drivendataorg/tick-tick-bloom) from that challenge, and has been optimized for generalizability and efficiency. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters