forked from lpinner/gdal-calculations
-
Notifications
You must be signed in to change notification settings - Fork 0
Unmaintained mirror of code.google.com/p/gdal-calculations
License
dogbull/gdal-calculations
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
This project is not maintained. <a id="top"></a> This package enables simple tiled (or untiled if desired) raster calculations (AKA "map algebra") from the commandline or from within your python scripts. * [Notes](#not) * [Installation](#ins) * [Requirements](#req) * [Commandline raster calculator](#cmd) * [Raster calculations library](#lib) <a id="not"></a> Notes [^](#top) ----- Both the raster calculator and the calculations library can handle rasters with different extents,cellsizes and coordinate systems as long as they overlap. If extents/cellsizes/coordinate systems differ, the output extent/cellsize will be the MINOF/MAXOF of input datasets, while the output coordinate system will be . that of the leftmost Dataset in the expression unless Env.extent/Env.cellsize/Env.srs are specified. gdal.Dataset and gdal.RasterBand and numpy.ndarray method and attribute calls are passed down to the underlying gdal.Dataset, gdal.RasterBand and ndarray objects. If numexpr is installed, it can be used to evaluate your expressions as it is much faster. However, numexpr expressions are very limited: tiled processing, on-the-fly reprojection, extent clipping/snapping, method/function calls and subscripting are not supported. <a id="ins"></a> Installation [^](#top) ------------ Windows: Download and run the 32bit or 64bit installer as appropriate. All: Download and extract the gdal-calculations-{version}.tar.gz and run `python setup.py install` with administrative or root privileges. <a id="req"></a> Requirements [^](#top) ------------ * [Python](http://www.python.org) 2.6+ * [GDAL](http://www.gdal.org) with python bindings * [numpy](http://www.numpy.org) <a id="cmd"></a> Commandline raster calculator [^](#top) ----------------------------- Name: gdal_calculate Purpose: Perform simple tiled raster calculations (AKA "map algebra") from the commandline Required parameters: --calc : calculation in numpy syntax, rasters specified as using any legal python variable name syntax, band numbers are specified using square brackets (zero based indexing) --outfile : output filepath --{*} : filepaths for raster variables used in --calc e.g. --calc='(someraster[0]+2)*c' --someraster='foo.tif' --c='bar.tif' Optional parameters: --of : GDAL format for output file (default "GTiff")') --co : Creation option to the output format driver. Multiple options may be listed. --cellsize : one of DEFAULT|MINOF|MAXOF|"xres yres"|xyres (Default=DEFAULT, leftmost dataset in expression) --extent : one of MINOF|INTERSECT|MAXOF|UNION|"xmin ymin xmax ymax" (Default=MINOF) --nodata : handle nodata using masked arrays (Default=False) uses numpy.ma.MaskedArray to handle NoData values MaskedArrays can be much slower... --notile : don't use tiled processing, faster but uses more memory (Default=False) --numexpr : Enable numexpr evaluation (Default=False) --overwrite : overwrite if required (Default=False) -q --quiet : Don't display progress (Default=False) --reproject : reproject if required (Default=False) datasets are projected to the SRS of the first input dataset in an expression --resampling : one of "AVERAGE"|"BILINEAR"|"CUBIC"|"CUBICSPLINE"| "LANCZOS"|"MODE"|"NEAREST"|gdal.GRA_*) (Default="NEAREST") --snap : filepath of a raster to snap extent coordinates to. --srs : the output spatial reference system one of osgeo.osr.SpatialReference (object)|WKT (string)|EPSG code (integer) (Default = None) --tempdir : filepath to temporary working directory (can also use /vsimem for in memory tempdir) --tempoptions : list of GTIFF creation options to use when creating temp rasters (Default = ['BIGTIFF=IF_SAFER']) Example: gdal_calculate --outfile=../testdata/ndvi.tif \ --calc="((nir[3]-red[2].astype(numpy.float32))/(nir[3]+red[2].astype(numpy.float32)))" \ --red=../testdata/landsat_utm50.tif \ --nir=../testdata/landsat_geo.tif \ --overwrite --reproject --extent=MAXOF <a id="lib"></a> Raster calculations library [^](#top) --------------------------- Name: gdal_calculations Purpose: GDAL Dataset and Band abstraction for simple tiled raster calculations (AKA "map algebra") Author: Luke Pinner Contributors: Matt Gregory Classes/Objects: Dataset(filepath_or_dataset ,*args) - Base Dataset class. - Instantiate by passing a path or gdal.Dataset object. - Supports gdal.Dataset and numpy.ndarray method and attribute calls. - Supports arithmetic operations (i.e ds1 + ds2) Band - Returned from Dataset[i] (zero based) or Dataset.GetRasterBand(j) (1 based) methods, not instantiated directly. - Supports gdal.RasterBand and numpy.ndarray method and attribute calls. - Supports arithmetic operations (i.e ds1[0] + ds2.GetRasterBand(1)) ClippedDataset(dataset_or_band, extent) - Subclass of Dataset. - Uses VRT functionality to modify extent. ConvertedDataset(dataset_or_band, datatype) - Subclass of Dataset. - Uses VRT functionality to modify datatype. - Returned by the type conversion functions, not instantiated directly. TemporaryDataset(cols,rows,bands,datatype,srs='',gt=[],nodata=[]) - Subclass of Dataset. - A temporary raster that only persists until it goes out of scope. - Stored in the Env.tempdir directory, which may be on disk or in memory (/vsimem). - Can be made permanent with the `save` method. WarpedDataset(dataset_or_band, wkt_srs, snap_ds=None, snap_cellsize=None) - Subclass of Dataset. - Uses VRT functionality to warp Dataset. ArrayDataset(array,extent=[],srs='',gt=[],nodata=[], prototype_ds=None) - Subclass of TemporaryDataset. - Instantiate by passing a numpy ndarray and georeferencing information or a prototype Dataset. DatasetStack(filepaths, band=0) - Stack of bands from multiple datasets - Similar to gdalbuildvrt -separate etc... functionality, except the class can handle rasters with different extents,cellsizes and coordinate systems as long as they overlap. Env - Object for setting various environment properties. - This is instantiated on import. - The following properties are supported: cellsize - one of 'DEFAULT','MINOF','MAXOF', [xres,yres], xyres - Default = "DEFAULT" enable_numexpr - this can break core numpy methods, such as numpy.sum([Dataset(foo),Dataset(bar)] - Default = False extent - one of "MINOF", "INTERSECT", "MAXOF", "UNION", [xmin,ymin,xmax,ymax] - Default = "MINOF" nodata - handle nodata using masked arrays - True/False - Default = False ntiles - number of tiles to process at a time - Default = 1 overwrite - overwrite if required - True/False - Default = False reproject - reproject if required - True/False - datasets are projected to the SRS of the first input dataset in an expression - Default = False resampling - one of "AVERAGE"|"BILINEAR"|"CUBIC"|"CUBICSPLINE"|"LANCZOS"|"MODE"|"NEAREST"|gdal.GRA_*) - Default = "NEAREST" snap - a gdal_calculations.Dataset/Band object - Default = None srs - the output spatial reference system - one of osgeo.osr.SpatialReference (object)|WKT (string)|EPSG code (integer) - Default = None tempdir - temporary working directory - Default = tempfile.tempdir tempoptions - list of GTIFF creation options to use when creating temp rasters - Default = ['BIGTIFF=IF_SAFER'] tiled - use tiled processing - True/False - Default = True Byte, UInt16, Int16, UInt32, Int32, Float32, Float64 - Type conversions functions - Returns a ConvertedDataset object Examples: from gdal_calculations import * Env.extent = [xmin, ymin, xmax, ymax] # Other acceptable values: # 'INTERSECT' or 'MINOF' (default) # 'UNION' or 'MAXOF' Env.resampling = 'CUBIC' # Other acceptable values: # 'NEAREST' (default) # 'AVERAGE'|'BILINEAR'|'CUBIC' # 'CUBICSPLINE'|'LANCZOS'|'MODE' # gdal.GRA_* constant Env.reproject=True #reproject on the fly if required Env.nodata=True #Use a numpy.ma.MaskedArray to handle NoData values #Note MaskedArrays are much slower... Env.overwrite=True gdal.UseExceptions() ds1=Dataset('../testdata/landsat_utm50.tif')#Projected coordinate system ds2=Dataset('../testdata/landsat_geo.tif') #Geographic coordinate system #red=ds1[2].astype(np.float32) #You can use numpy type conversion (is slower) red=Float32(ds1[2]) #or use one of the provided type conversion functions (quicker as they use VRT's) nir=ds2[3] ndvi=(nir-red)/(nir+red) #Or in one go #ndvi=(ds2[3]-Float32(ds1[2])/(ds2[3]+Float32(ds1[2])) ndvi=ndvi.save(r'../testdata/ndvi1.tif') #If you want to speed things up... use numexpr! #but there are a few limitations... import numexpr as ne #Must not be tiled for numexpr Env.tiled=False #No subscripting or methods in the expression #red=ds1[2].astype(np.float32) red=Float32(ds1[2]) nir=ds2[3] #Some Int*/UInt* datasets cause segfaults, workaround is cast to Float32 #Must be same coordinate systems and dimensions #The check_extent method will reproject and clip if required #This is done using virtual rasters (VRT) so is very quick nir,red=nir.check_extent(red) expr='(nir-red)/(nir+red)' ndvi=ne.evaluate(expr) #evaluate returns an ndarray not a Dataset #So need to write to a Temporary ArrayDataset ndvi=ArrayDataset(ndvi,prototype_ds=nir) ndvi=ndvi.save(r'../testdata/ndvi2.tif',options=['compress=LZW','TILED=YES']) #Get the raw numpy array data for block in red.ReadBlocksAsArray(): print block.x_off,block.y_off,block.data.shape rawdata=red.ReadAsArray() print rawdata.shape
About
Unmaintained mirror of code.google.com/p/gdal-calculations
Resources
License
Stars
Watchers
Forks
Packages 0
No packages published
Languages
- Python 99.9%
- Other 0.1%