To train the found ConvNet (the result of nas-search/), first the NAS-decisions (ConvNet encoding) are parsed from the output_dir of the NAS search (defined with the --parse_search_dir) flag. Then the parsed ConvNet arch is trained for 350 epochs on ImageNet. The training follows the MnasNet training schedule and hyper-parameters from the original MnasNet-TPU repo.
- Setting up ImageNet dataset
To setup the ImageNet follow the instructions from here
- Setting up TPU-related ENV variables:
export STORAGE_BUCKET=gs://{your-bucket-name-here}
export DATA_DIR=${STORAGE_BUCKET}/{imagenet-dataset-location}
export PARSE_DIR=${STORAGE_BUCKET}/model-single-path-search
export OUTPUT_DIR=${STORAGE_BUCKET}/model-single-path-train-final
export TPU_NAME=node-{your-tpu-name}
- Launch training:
lambda_val=0.020; python main.py --tpu=$TPU_NAME --data_dir=$DATA_DIR --model_dir=${OUTPUT_DIR}/lambda-val-${lambda_val}/ --parse_search_dir=${PARSE_DIR}/lambda-val-${lambda_val}/