forked from enyac-group/single-path-nas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
imagenet_input.py
342 lines (281 loc) · 12 KB
/
imagenet_input.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Efficient ImageNet input pipeline using tf.data.Dataset."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import abc
from collections import namedtuple
import functools
import os
import tensorflow as tf
import preprocessing
def build_image_serving_input_fn(image_size):
"""Builds a serving input fn for raw images."""
def _image_serving_input_fn():
"""Serving input fn for raw images."""
def _preprocess_image(image_bytes):
"""Preprocess a single raw image."""
image = preprocessing.preprocess_image(
image_bytes=image_bytes, is_training=False, image_size=image_size)
return image
image_bytes_list = tf.placeholder(
shape=[None],
dtype=tf.string,
)
images = tf.map_fn(
_preprocess_image, image_bytes_list, back_prop=False, dtype=tf.float32)
return tf.estimator.export.ServingInputReceiver(
images, {'image_bytes': image_bytes_list})
return _image_serving_input_fn
class ImageNetTFExampleInput(object):
"""Base class for ImageNet input_fn generator.
Args:
is_training: `bool` for whether the input is for training
use_bfloat16: If True, use bfloat16 precision; else use float32.
num_cores: `int` for the number of TPU cores
image_size: `int` for image size (both width and height).
transpose_input: 'bool' for whether to use the double transpose trick
"""
__metaclass__ = abc.ABCMeta
def __init__(self,
is_training,
use_bfloat16,
num_cores=8,
image_size=224,
transpose_input=False):
self.image_preprocessing_fn = preprocessing.preprocess_image
self.is_training = is_training
self.use_bfloat16 = use_bfloat16
self.num_cores = num_cores
self.transpose_input = transpose_input
self.image_size = image_size
def set_shapes(self, batch_size, images, labels):
"""Statically set the batch_size dimension."""
if self.transpose_input:
images.set_shape(images.get_shape().merge_with(
tf.TensorShape([None, None, None, batch_size])))
labels.set_shape(labels.get_shape().merge_with(
tf.TensorShape([batch_size])))
else:
images.set_shape(images.get_shape().merge_with(
tf.TensorShape([batch_size, None, None, None])))
labels.set_shape(labels.get_shape().merge_with(
tf.TensorShape([batch_size])))
return images, labels
def dataset_parser(self, value):
"""Parses an image and its label from a serialized ResNet-50 TFExample.
Args:
value: serialized string containing an ImageNet TFExample.
Returns:
Returns a tuple of (image, label) from the TFExample.
"""
keys_to_features = {
'image/encoded': tf.FixedLenFeature((), tf.string, ''),
'image/class/label': tf.FixedLenFeature([], tf.int64, -1),
}
parsed = tf.parse_single_example(value, keys_to_features)
image_bytes = tf.reshape(parsed['image/encoded'], shape=[])
image = self.image_preprocessing_fn(
image_bytes=image_bytes,
is_training=self.is_training,
image_size=self.image_size,
use_bfloat16=self.use_bfloat16)
# Subtract one so that labels are in [0, 1000).
label = tf.cast(
tf.reshape(parsed['image/class/label'], shape=[]), dtype=tf.int32) - 1
return image, label
@abc.abstractmethod
def make_source_dataset(self, index, num_hosts):
"""Makes dataset of serialized TFExamples.
The returned dataset will contain `tf.string` tensors, but these strings are
serialized `TFExample` records that will be parsed by `dataset_parser`.
If self.is_training, the dataset should be infinite.
Args:
index: current host index.
num_hosts: total number of hosts.
Returns:
A `tf.data.Dataset` object.
"""
return
def input_fn(self, params):
"""Input function which provides a single batch for train or eval.
Args:
params: `dict` of parameters passed from the `TPUEstimator`.
`params['batch_size']` is always provided and should be used as the
effective batch size.
Returns:
A `tf.data.Dataset` object.
"""
# Retrieves the batch size for the current shard. The # of shards is
# computed according to the input pipeline deployment. See
# tf.contrib.tpu.RunConfig for details.
batch_size = params['batch_size']
if 'context' in params:
current_host = params['context'].current_input_fn_deployment()[1]
num_hosts = params['context'].num_hosts
else:
current_host = 0
num_hosts = 1
dataset = self.make_source_dataset(current_host, num_hosts)
# Use the fused map-and-batch operation.
#
# For XLA, we must used fixed shapes. Because we repeat the source training
# dataset indefinitely, we can use `drop_remainder=True` to get fixed-size
# batches without dropping any training examples.
#
# When evaluating, `drop_remainder=True` prevents accidentally evaluating
# the same image twice by dropping the final batch if it is less than a full
# batch size. As long as this validation is done with consistent batch size,
# exactly the same images will be used.
dataset = dataset.apply(
tf.contrib.data.map_and_batch(
self.dataset_parser, batch_size=batch_size,
num_parallel_batches=self.num_cores, drop_remainder=True))
# Transpose for performance on TPU
if self.transpose_input:
dataset = dataset.map(
lambda images, labels: (tf.transpose(images, [1, 2, 3, 0]), labels),
num_parallel_calls=self.num_cores)
# Assign static batch size dimension
dataset = dataset.map(functools.partial(self.set_shapes, batch_size))
# Prefetch overlaps in-feed with training
dataset = dataset.prefetch(tf.contrib.data.AUTOTUNE)
return dataset
class ImageNetInput(ImageNetTFExampleInput):
"""Generates ImageNet input_fn from a series of TFRecord files.
The training data is assumed to be in TFRecord format with keys as specified
in the dataset_parser below, sharded across 1024 files, named sequentially:
train-00000-of-01024
train-00001-of-01024
...
train-01023-of-01024
The validation data is in the same format but sharded in 128 files.
The format of the data required is created by the script at:
https://github.com/tensorflow/tpu/blob/master/tools/datasets/imagenet_to_gcs.py
"""
def __init__(self,
is_training,
use_bfloat16,
transpose_input,
data_dir,
image_size=224,
num_parallel_calls=64,
cache=False):
"""Create an input from TFRecord files.
Args:
is_training: `bool` for whether the input is for training
use_bfloat16: If True, use bfloat16 precision; else use float32.
transpose_input: 'bool' for whether to use the double transpose trick
data_dir: `str` for the directory of the training and validation data;
if 'null' (the literal string 'null') or implicitly False
then construct a null pipeline, consisting of empty images
and blank labels.
image_size: `int` for image size (both width and height).
num_parallel_calls: concurrency level to use when reading data from disk.
cache: if true, fill the dataset by repeating from its cache
"""
super(ImageNetInput, self).__init__(
is_training=is_training,
image_size=image_size,
use_bfloat16=use_bfloat16,
transpose_input=transpose_input)
self.data_dir = data_dir
if self.data_dir == 'null' or not self.data_dir:
self.data_dir = None
self.num_parallel_calls = num_parallel_calls
self.cache = cache
def _get_null_input(self, data):
"""Returns a null image (all black pixels).
Args:
data: element of a dataset, ignored in this method, since it produces
the same null image regardless of the element.
Returns:
a tensor representing a null image.
"""
del data # Unused since output is constant regardless of input
return tf.zeros([self.image_size, self.image_size, 3], tf.bfloat16
if self.use_bfloat16 else tf.float32)
def dataset_parser(self, value):
"""See base class."""
if not self.data_dir:
return value, tf.constant(0, tf.int32)
return super(ImageNetInput, self).dataset_parser(value)
def make_source_dataset(self, index, num_hosts):
"""See base class."""
if not self.data_dir:
tf.logging.info('Undefined data_dir implies null input')
return tf.data.Dataset.range(1).repeat().map(self._get_null_input)
# Shuffle the filenames to ensure better randomization.
file_pattern = os.path.join(
self.data_dir, 'train-*' if self.is_training else 'validation-*')
# For multi-host training, we want each hosts to always process the same
# subset of files. Each host only sees a subset of the entire dataset,
# allowing us to cache larger datasets in memory.
dataset = tf.data.Dataset.list_files(file_pattern, shuffle=False)
dataset = dataset.shard(num_hosts, index)
if self.is_training and not self.cache:
dataset = dataset.repeat()
def fetch_dataset(filename):
buffer_size = 8 * 1024 * 1024 # 8 MiB per file
dataset = tf.data.TFRecordDataset(filename, buffer_size=buffer_size)
return dataset
# Read the data from disk in parallel
dataset = dataset.apply(
tf.contrib.data.parallel_interleave(
fetch_dataset, cycle_length=self.num_parallel_calls, sloppy=True))
if self.cache:
dataset = dataset.cache().apply(
tf.contrib.data.shuffle_and_repeat(1024 * 16))
else:
dataset = dataset.shuffle(1024)
return dataset
# Defines a selection of data from a Cloud Bigtable.
BigtableSelection = namedtuple('BigtableSelection',
['project',
'instance',
'table',
'prefix',
'column_family',
'column_qualifier'])
class ImageNetBigtableInput(ImageNetTFExampleInput):
"""Generates ImageNet input_fn from a Bigtable for training or evaluation.
"""
def __init__(self, is_training, use_bfloat16, transpose_input, selection):
"""Constructs an ImageNet input from a BigtableSelection.
Args:
is_training: `bool` for whether the input is for training
use_bfloat16: If True, use bfloat16 precision; else use float32.
transpose_input: 'bool' for whether to use the double transpose trick
selection: a BigtableSelection specifying a part of a Bigtable.
"""
super(ImageNetBigtableInput, self).__init__(
is_training=is_training,
use_bfloat16=use_bfloat16,
transpose_input=transpose_input)
self.selection = selection
def make_source_dataset(self, index, num_hosts):
"""See base class."""
data = self.selection
client = tf.contrib.cloud.BigtableClient(data.project, data.instance)
table = client.table(data.table)
ds = table.parallel_scan_prefix(data.prefix,
columns=[(data.column_family,
data.column_qualifier)])
# The Bigtable datasets will have the shape (row_key, data)
ds_data = ds.map(lambda index, data: data)
if self.is_training:
ds_data = ds_data.repeat()
return ds_data